Dashlane’s Security
Principles & Architecture

i
|\ DASHLANE

02 Sep 2025
v3.0.1

Contents

1 General Security Principles.........ociiiiiiiii i e e iicrcrasasssa e sansasaranannaans 5
B T3 o Y= o] =Y =S 5
1.2 Protectionof User Datain Dashlanecccoviiiiiiiiiiiii i 6
1.3 Local ACCESS 1O USEI Data .. vivii ittt ittt ettt ie e e e eenns 7
1.4 Local Data Usage After DeCrypting ...ooviiiiiii it 7
1.5 Use of 2FA Applications to Increase User Data Safetyccocoviiiiiiiiiiiinnnt 8
1.6 AUthenTiCatioN ... e 8
1.7 COMMUNICATION L. e et 8
1.8 Details on Authentication FLOW ... e 9

1.8.1 Adding a new device for Master Password based users.................u..... 10

1.8.2 Adding a new device for Passwordlessusers.........ocovviiiiiiiiiiiiennnn.n. 1

1.8.2.1 Proximity transfer withQRcodescan...........coovviviiiiiiiennnn... 1

1.8.2.2 Exchange via server withvisualcheckcooiiiiiiil 1

1.9 Keeping the User Experience Simple ..ot i 12
1.10 Use of 2FA Application to Secure the Connection to a New Device.................. 13
111 2-Factor AUthentiCationo e e e 13
112 Sharing Data BetWeen USerS ...uuiiiiii it iiie it i et ie i e e eananns 13
L FC R A XoToTo T 1 A R {=YoT0 1VZ=Y Y/ 16
1.13.1 Admin-assisted Account ReCoVerycoouiiiiiiiiiiii e 16

1.13.2 AccoUNt RECOVEIY KBY ..t i 17

1.14 Dark Web Monitoring for Master Passwordoovviiiiiiiiiiiii i i eennaes 17
LI T X {12 Y20 1 ¥ = 18
1.16 Credential Risk Detection ..o e 19
100 VLU o == 20
1.18 Machine Learning for Autofill and Phishing Detection.............cccoviiiiiiienn.. .. 22
1.18.1 Privacy-First Data Collection.........ccooiiiiiiiiiiii e 22

1.18.2 Model Architectureocvuiiiii e 23
1.18.2.1 Model Development Pipelinec.ccooiiiiiii ... 23

1.18.2.2 Model Specifications........cccooiiiiiiii i 23

1.18.3 Feature EXtractionoiiiiiiii i e e 24
1.18.3.1 Autofill Feature Extraction.........oooviiiiiiiiiiiiii i 24

1.18.3.2 Phishing Detection Feature Extraction..............ccooviiiiin. 24

2 SiNgle SigN-0ON (SS0) tuuuiiiiiitieieitettatasastetntnsntatasassssnsnsnsnsarassssnsnsnsnnnrns 25
P2 I 1o oY 11 T i e o 26
2.2 GENeral PrinCiple e e 26
2.3 Single Sign-On with the Self-Hosted Connectorcvviiiiiiiiiii e 26

PG 0 I O 1Y =Y T Y 26
PG B2 Y - Y o= 27
2.3.3 Keys, secrets, and certificatescooviiiiiiiiiiiii 27
2.3.4 WOrKIlOW . 28
2.4 Single Sign-On with the Dashlane-Hosted Connector............ccoovviiiviiiinnnn, 29

P2 B O 1YL= Y11 Y 29

2.4.2 Cryptographicmaterials........ccooiiiiiiiiii i 29

24,3 WOTK I OWS oottt e et 30

2.4.3.1 Enclave initialization stepccooiiiiiiiiii 30

2.4.3.2 Storageofthesecureenclave..........oovviiiiiiiiiiiiiiiiiiiees 31

2.4.3.3 TeaAM CreatioN ..vu ittt ittt e e 32

2.4.3.4 USer SSO L0 iN ...ttt ittt 33

2.4.3.5 SCIM USer ProViSiONiNg ...veeeeeeeriieeiiereeiarernteeenneseeneeenns 35

2.4.3.6 GroUP ProVISIONINE «uvuee e iiie e e tiie et eieteeiaeseeataaeerenaneeeennn 35

3 Impact on Potential Attack Scenarios.......cuveeiiiiiieiiiesriesiesssnsssnsssnssnnsnnnnnns 36
3.1 Minimal Security ArchiteCtUre . ..oviiiii i e 37

3.2 Most Common Security Architectureooiviiiiiii e 37

3.3 Dashlane Security ArchiteCtureooviviiiiiiii e 38

3.4 Anti-Clickjacking ProviSionsooeeuiiii i e 39

3.5 SamME-Origin PoliCY «ooiiiiiii i e, 39

3.6 MeEMOrY ProteCtioN ...t e et e 40

A Activity Log - List of EVeNtsocviiiiiiiiinciiecriecrnecrnncsnnssnnssnnssnnssnnsnnnsnnnsnnns 41
Al Default ACtiVitY LOZS .ottt et e e e 41

A.2 Additional Sensitive ACtiVity LOSS .uuuiiiii it 43

N T = T = = 1 o 44

B Change Historycvuriiiiieriioiatasecsaranscsaransesasassasnsassnsasassasasnassnsnsnssnnnns 45

Figures

© 00 N o o b NN -

gaﬁa“m)ﬁ)“o’@ooumm-hwm—‘o

Authentication Flow During Registration ...t i 9
Authentication Flow for seCoNd devViCeooviiiiiiiiiiii e 10
Authentication When Adding a New Device-Passwordless flowccoovviviiiiiinnn..s. 1
Registration and Authentication StePsSooiviiiiii e 12
Second Device RegisStration StePS ...uu. it 13
Credential Sharing ..oooi it e i it e e e 15
Dark Web monitoring for Master Password flowcooviiiiiiiii i 18
Credential Risk Detection Mass Deployment ProCeSSvvviiiiiiiiii it iiiaieiess 19
Credential Risk Detection activity loguploadccooiiiiiiiiii i 20
Dashlane Slack app installationcoooiiiiiiiiiii e e 21
[N T8 Lo F= =N oT o 1 ¥ = 1 =1 o (o] o 21
[N U L0 P =3 o 10 1 [=, 22
Data collection PIPelINE .. .cv e e e i 23
Feature extraction forautofill ... 24
Example of extracted phishing indicators on Wikipedia..........ccooiiiiiiiiiiiiiii i 25
Self-Hosted SSO WOrKFLOW e 28
Dashlane-Hosted SSO WOrkflow ... e 30
Dashlane Confidential SSO Initialization ..o e 31
Dashlane Confidential SSO Team Creation FLOWcooiiiiiiiii e 32
Dashlane Confidential SSO-User Login FLOWocviiiiiiiiiiii i it 33
Dashlane-Hosted SSO-User Login Flow Part 2coovviiiiiiiiii i i 34
Dashlane Confidential User proviSioningcvuiiiiiiii it iie i ie e aanns 35
Dashlane Confidential Group proviSioningc..uiiiiiiiiiiiiiiiii e, 36
Potential Attack Scenarios With Minimal Security ... 37
Potential Attack Scenarios With Most Cloud Architecturecc.ooovviiiiiiinnnne. 38

Potential Attack Scenarios With Dashlane’s Security Architecture.................cooveutt. 39

Dashlane Password Manager is designed using zero-knowledge architecture, with the data
encrypted locally on the user’s device. Only the user can access the data by using a password
or another form of authentication. Since Dashlane doesn’t have access to the user’s vault and
doesn’t store the user’s Master Password, malicious actors can’t steal the information, even if
Dashlane’s servers are compromised.

1 General Security Principles

Before storing each individual’'s vault on its servers, Dashlane encrypts it using Advanced
Encryption Standard (AES) 256-bit encryption. Access to the vault requires either a User Master
Password, which is only known to the account holder, or, for a passwordless user, a machine-
generated unique password. In both cases, this password is not stored on Dashlane’s servers and
is not accessible to Dashlane employees. Dashlane uses a separate User Device Key to authen-
ticate each persononits servers. When someone creates a new Dashlane account or enables an
additional device for data synchronization, Dashlane first verifies the authorized user by sending
a token through the registered email address or mobile phone number, then auto-generates
the User Device Key. For passwordless login, access to the additional device is conditioned by
authorization from an already registered device, soit is not necessary to send the token through
email or mobile.

When a person enters their Master Password into the Dashlane app, the data is loaded into
the memory of the authorized device. For additional security, individuals who log in with their
Master Password can link their Dashlane accounts to a 2-factor authentication (2FA) app such
as Google Authenticator. Enabling the 2FA option means that both the Master Password and
the authenticator code are necessary for decrypting the vault. All communication between
the Dashlane app on the local device and Dashlane’s servers takes place over SSL/TLS crypto-
graphic protocol. And while a variety of security processes occur in the background during
user registration and authentication, the user experience is simple and streamlined. Dashlane
Business account admins can enable an optional account recovery feature through their Admin
Console. This feature allows employees to reset their Master Password and recover their data
while preserving Dashlane’s zero-knowledge architecture. When an employee initiates account
recovery, the admin acts as the trusted third party to verify the user’s identity and approve the
request.Inaddition, an Account Recovery Key is an available mechanism for all Master Password
based and passwordless users to recover access to their account using a single-use key.

1.1 List of secrets

Dashlane uses many secrets to secure user data. The main ones are summarized in the following
table:

Dashlane-Security White Paper v3.0.1

Key Name Key Symbol Description
Password/Passphrase generated by the user.
User Master Password Useryp Serves to derive the key to encrypt the user's vault.

The User Master Password is expected to be as random as
possible.

Random 32-byte key, generated by local devices.

Intermediate Key Intermediatexe,
Serves for local encryption purposes.
Random 32-byte key, generated by local devices.

User Device Key Deviceey
Serves as authentication secret for authentication to servers.
Random 32-byte key, generated server side at 2FA activation.

User Secondary Key UserSecondaryye,
Provided by servers to client upon 2FA challenge validation.
28-character unique string generated with password generator
=145 bits of ent .
Account Recovery Key AccountRecoveryye, (5 bits of entropy)

Key for the Account Recovery mechanism.

40-character unique string generated with password generator

Machine- t Mast = 243 bits of ent .
achine-Generated aster MachineGeneratedys (3 bits of entropy)
Password

Serves as encryption key of the vault for MPLess accounts.

Random 32-byte key, generated by Dashlane servers.

Mass Deployment Team Ke MassDeploymentTeamy, L .
ploy Y poy Key Serves as authentication secret to authentify logged-out users

from a specific team and give them restricted permissions.

Table 1: Dashlane Secrets Overview

1.2 Protection of User Data in Dashlane

Protection of user data in Dashlane relies on 3 separate secrets:

« The User Master Password:

» Dashlane uses the library zxcvbn' to validate the strengh of a Useryp generated by the user.
The library checks the Useryr against many policies (common passwords, complexity, and so
on) to compute a score. The score (integer between 0-4) provides a global range of guesses
to find the password, from O (too guessable) to 4 (very unguessable). The library provides
actionnable feedback to choose better passwords.

Dashlane applications enforce a score greater or equal to 3 (safely unguessable, with an
estimated number of guesses between 108 and 10'0).

» |t is never stored on Dashlane servers, nor are any of its derivatives (including hashes).

» By default, it is not stored locally on the disk on any of the user’s devices; we simply use it to
decrypt the local files containing the user data.

» It is stored locally upon user request when enabling the feature “Remember my Master
Password”.

» In addition, we ensure that the user’s Master Password is never transmitted over the inter-
net.?

Thttps://github.com/dropbox/zxcvbn

1-General Security Principles 6

- The Intermediate Key: in some cases (local storage), we use Intermediatek., encrypted with a
derivative of Useryp.

+ The User Device Keys: unique key for each device enabled by a user:
» Auto-generated for each device.
» Used for authentication.

+ The Machine-Generated Master Password (as an alternative to the User Master Password):

» Is a strong, unique 40-character machine-generated string, generated with password gen-
erator.

» |t is never stored on Dashlane servers, nor are any of its derivatives (including hashes).

» By default, it is not stored locally on the disk on any of the user’s devices; we simply use it to
decrypt the local files containing the user data.

» It is stored locally when logging into the Dashlane web extension.

» In addition, we ensure that the MachineGeneratedys is never transmitted over the internet.®

1.3 Local Access to User Data

Access to the user’s data requires using the Useryp, which is only known by the user. It is used
to generate the symmetric Advanced Encryption Standard (AES) 256-bit key for encryption and
decryption of the user’s personal data on the user’s device. In the case of passwordless, the
MachineGeneratedyp is not visible for the user, but transported securely between devices when
the user adds a new device, and then used exactly like the Useryp.

We use Web Crypto API for most browser-based cryptography and the native libraries for iOS
and Android. We use the Argon?2 reference library compiled into Web Assembly (Wasm) or linked
to the mobile app.

1.4 Local Data Usage After Decrypting

Once the user has input their Useryp locally in Dashlane or validated their MachineGeneratedyp
via PIN Code or biometrics and their user data has been decrypted, data is loaded in memory.

The Dashlane client operates within significant constraints to use decrypted user data effec-
tively and securely:

+ Dashlane processes access individual passwords to autofill them on websites or to save
credentials without having to ask the user for Useryr or MachineGeneratedyr each time.

« The Argon2d (or PBKDF?2) derivation used to compute the AES keys adds significant latency
(the purpose of this is to protect against brute force attacks).

See paragraph Section 3.6 for more on memory management.

2The only derivative of it that is sent over the internet is the final encrypted vault. The following paragraphs
outline how we ensure its resilience to attacks.

3The only derivative of it that is sent over the internet is the final encrypted vault. The following paragraphs
outline how we ensure its resilience to attacks.

1.5 Use of 2FA Applications to Increase User Data Safety

At any time, a user can link their Dashlane account to a 2FA application on their mobile device
(such as Google Authenticator). All of their data (both the data stored locally and the data sent
to Dashlane servers for synchronization purposes) is then encrypted with a new key, which is
generated by a combination of Useryp and a randomly generated key UserSecondaryy., stored on
the Dashlane server, as described in the following steps:

« The user links their Dashlane account with their 2FA application.

- Dashlane servers generate and store UserSecondaryk., Which is sent to the user’s client appli-
cation.

+ All personal data are encrypted with a new symmetric AES-256 bit key generated client-side
from both Useryp and UserSecondarykey.

 UserSecondaryye, is never stored locally.

+ The next time the user tries to log into Dashlane, they will be asked by Dashlane servers to
provide a One-Time Password generated by the 2FA application. Upon receiving and verifying
this One-Time Password, Dashlane servers will send the UserSecondaryye, to the client appli-
cation, allowing the user to decrypt their data.

User data can be decrypted only by having both Useryr and the 2FA application linked to the
user’s account.

1.6 Authentication

As some of Dashlane’s services are cloud-based (data synchronization between multiple
devices, for instance), there is a need to authenticate the user on Dashlane servers.

Authentication of the user on Dashlane servers is based on Devicek., and has no relationship
with the User Master Password or MachineGeneratedyp.

When a user creates an account or adds a new device to synchronize their data, a new User
Device Key is generated by the servers. Devicek., is composed of 40 random bytes generated
using the OpenSSL RAND_byte function. The 8 first bytes are the access key, and 32 remaining
bytes are the secret key.

Devicee, is received by the user’s device and is stored locally in the user data, encrypted as all
other user data, as explained earlier. On the server side, the secret key part is encrypted so that
employees cannot impersonate a given user device. When a user has gained access to their data
using Useryp or MachineGeneratedyp, Dashlane is able to access Devicey, to authenticate them
on our servers without any user interaction.

As a result, Dashlane does not have to store Userypr or MachineGenerated, to perform authenti-
cation.

1.7 Communication

All communications between the Dashlane application and the Dashlane servers are secured
with HTTPS.

dashlane.com domain is HSTS preloaded to prevent any downgrade on any subdomain and we
keep our TLS endpoints cipher suites up-to-date with the current recommendations.

Dashlane-Security White Paper v3.0.1

It's important to note that we never rely on HTTPS alone and we build everything to ensure that
the confidentiality of the data is not affected even if the transport protocol is compromised.

1.8 Details on Authentication Flow

The initial registration for a user follows the flow described in Figure 1.

Device Key.

Storage of:

Client :
| Registration
E Account creation request
D k HTTPS
' Generates random User

' User Device
User Device Key is Account created -
stored locally and nﬁcwptnd'}

encrypted with a key,
derived from the User
Master Password or
Machine-Generated
Master Password.

Master e-mail
(Mobile phone)

Authentication

User Device Key
HTTPS

Authentication based

on User Device Key.

Figure 1: Authentication Flow During Registration

As seen in Figure 1, User,;p is never used to perform server authentication, and the only keys
stored on our servers are the User Device Keys.

1-General Security Principles 9

Dashlane-Security White Paper v3.0.1

1.8.1 Adding a new device for Master Password based users

........................

[)

1

1

. 1

Second Device '
1

1

1

1

New device authentication
HTTPS

Server generates:

+« New one-time
password

+« New User
Device Key

Send OTP by e-mail or SMS
User Device Key is
stored locally and
encrypted with a key
derived from the User
Master Password.

Storage of:
» New User
Device Key
(secret key part
Users can decrypt data is encrypted)
with their Master
Password.

........................

Figure 2: Authentication Flow for second device

When a user adds an additional device, Dashlane needs to make sure that the user adding said
device is indeed the legitimate owner of the account. This is to gain additional protection in the
event User);p has been compromised and an attacker who does not have access to their already-
enabled device is trying to access the account from another device.

As shown in Figure 2, when a user is attempting to connect to a Dashlane account on a device
that has not yet been authorized for that account, Dashlane generates a One-Time Password (a
token) that is sent to the user either to the email address used to create the Dashlane account
initially or by text message to the user’s mobile phone if the user has chosen to provide their
mobile phone number.

To enable the new device, the user has to enter both User,;p and the token. Only once this two-
factor authentication has been performed will Dashlane servers start synchronizing the user
data on the new device. All communication is handled with HTTPS, and the user data only travels
in AES-256 encrypted form. Please note again that Usery;p never transmits over the internet.

1-General Security Principles 10

Dashlane-Security White Paper v3.0.1

1.8.2 Adding a new device for Passwordless users

Client

Second Device

Authenticated Key

E Exchange via QR
D . Code or Security
' Challenge

New device authentication
HTTPS -
. . Server generates:
User Device Key is
stored locally and
encrypted with a key
derived from the
Machine Generated
Master Password.
Users can decrypt data
upon successful key
exchange.

« New User
Device Key

Storage of:

* New User
Device Key
Yy part
is encrypted)

User authenticated

I

........................

Figure 3: Authentication When Adding a New Device-Passwordless flow

When a passwordless user adds a new device, they can use an existing logged in device to
complete the setup process. Depending on the type of logged in device, the user can either
complete the new device setup with a QR code scan, or complete a security challenge. The goal
of the exchange is to securely transmit the MachineGenerated,;, from an already trusted device
to a new device. This key exchange is based on Elliptic Curve Cryptography, using Curve25519.

1.8.2.1 Proximity transfer with QR code scan

If a passwordless user has a logged in mobile device, a QR code scan can be used to add a new
device. When a user enters their email address into the new device (untrusted), a X25519 key
pair is generated on the device and the public key is displayed on the screen as a QR code. That
QR code must be scanned by a logged in device (trusted). Upon successful key exchange, the
two devices generate the same shared secret, derived into a cryptographic key, which will be
used to encrypt/decrypt the MachineGenerated,;, passed between the devices. The vault can be
then decrypted locally on the new device.

1.8.2.2 Exchange via server with visual check

If a passwordless user does not have a mobile logged in device or is unable to use the camera
functionality, then a security challenge can be performed. Without the ability to use proximity to
exchange the secret, the two devices need to use the server to transport the public keys. Dash-
lane ensures an attacker cannot tamper with the keys during the exchange by authenticating
the key exchange with Short Authenticated String:

1-General Security Principles 1

Dashlane-Security White Paper v3.0.1

- From the shared secret (output of the key exchange), we derive a key seen as a source of
entropy to choose five random words in a word list.

+ The wordlist is https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt.

+ If the key exchange was not tampered with, the two lists will match. We ask the user to input
one missing word (chosen at random) in the list of words, to incentivize them to check that the
two lists match. This confirmation happens on the trusted (authenticated) device.

+ We complement this security mechanism with a Public Key Commitment: the untrusted device
sends a hash of its X25519 public key at the beginning of the exchange, and releases it to the
untrusted device only upon receiving its public key. This mechanism would force an active Man
in The Middle eavesdropping the key exchange to provide a public key to the trusted device
before being able to know what Short Authenticated String it should match, deeply decreasing
the probability to successfully hijack the key exchange.

Upon successful completion of the challenge, the MachineGenerated,;, can be transmitted to the
new device, and the vault is decrypted locally on the user’s new device.

1.9 Keeping the User Experience Simple

Registration Account Creation

- User chooses a login and a PIN code + optional
User chooses a login and a strong password - 5
biometrics
o (7 User authenticated o (7 User authenticated

Authentication Authentication

° User enters login and password o User enters PIN or biometrics
° (7 User authenticated ° (7 User authenticated

(a) Master Password (b) Passwordless
Figure 4: Registration and Authentication Steps

All along, our goal has been to keep the user experience simple and to hide all the complexity
from the user. Security is growing more and more important for users of cloud services, but they
are not necessarily ready to sacrifice convenience for more security.

1-General Security Principles 12

https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt

Dashlane-Security White Paper

v3.0.1

Registration

o User enters login and password

- & X com=n

Registration - Passwordless

o User enters login

User completes device registration using a
logged-in device
User enters the one-time password

(7 User authenticated

° (7 User authenticated

(a) Master Password (b) Passwordless
Figure 5: Second Device Registration Steps

Even though what goes on in the background during the initial registration steps is complex (see
Figure 4.a), the user experience is very simple. All they have to do is choose between creating a
(strong) Useryp or going passwordless, and all the other keys are generated by the application
without user intervention.

When adding an additional device, the process is equally simple while remaining highly secure
through the use of two-factor authentication described in Figure 5.a or using an existing logged
in device.

1.10 Use of 2FA Application to Secure the Connection to a New Device

At any time, a user can link their Dashlane account to a 2FA application on their mobile device.
When they attempt to connect to a new device, instead of sending them a one-time password by
email, Dashlane asks the user to provide a one-time password generated by the 2FA application.

After receiving and verifying the one-time password provided by the user, Dashlane servers will
store the Device, generated by the client application, as described in Figure 5.b.

1.11 2-Factor Authentication

Dashlane offers 2-factor authentication that can be activated from the security settings in the
web extension or mobile app to force the usage of a second factor each time the user logs into
Dashlane.

Supported two-factor methods include 2FA applications such as Google Authenticator or U2F-
compatible devices such as Yubikeys. U2F is an open protocol from the FIDO Alliance. Dashlane
is a board-level member of the FIDO Alliance.

1.12 Sharing Data Between Users

Dashlane allows users to share credentials, Secure Notes, or secrets with other users, or with
groups of users, in such a way that Dashlane never directly accesses a user’s data at any point.
In fact, Dashlane’s servers never have access to the content of shared data.

Dashlane’s sharing relies on asymmetric encryption; upon account creation, a unique pair of
public and private RSA keys are created by the Dashlane application for each user. The private

1-General Security Principles 13

https://fidoalliance.org

Dashlane-Security White Paper v3.0.1

key is stored in the user’s personal data, and the public key is sent to Dashlane’s servers. RSA
public and private keys are generated using the OpenSSL function RSA_generate_key_ex, using
a key length of 2048 bits, with 3 as a public exponent.

Here is the process for a user, Alice, to share a credential with another user, Bob:

1-General Security Principles 14

Dashlane-Security White Paper

v3.0.1

Alice Bob Dashlane Servers
Alice wants to share
a credential with
Bob
Request Bob's public key
Return Boh's public key
Generate 256-bit
AES ObjectKey
(unique for this
shared item)
Encrypt ObjectKey
with Bob's public
key —
BobEncryptedObjec-
tKey
Send BobEncryptedObjectKey
Encrypt credential
with ObjectKey
using AES-CBC +
HMAC-SHA2 —
EncryptedCredential
Send EncryptedCredential
Store
BobEncryptedObjec-
tKey and
EncryptedCredential
Bob logs in to
Dashlane
Notify that Alice wants to share a
credential
Bob must manually
accept the item
Baob signs acceptance
with his private key
Send signed acceptance
Send BobEncryptedObjectKey
and EncryptedCredential
Decrypt
BobEncryptedObjec-
tKey with Bob's
private key —
ObjectKey
Decrypt
EncryptedCredential
with ObjectKey —
plain text credential
Add Alice's
credential to Bob's
personal data
Alice

Bob Dashlane Servers

Figure 6: Credential Sharing

1-General Security Principles

Sharing an item with a group of users or sharing a collection of multiple items follows similar

security principles:

+ An AES key, the GroupKey is created for the group or collection and encrypted with each user’s
public key.

+ An RSA public and private key pair is also created for the group.

« The private key is encryped with the GroupKey and used to sign the item or items in the group
while the public key is used to encrypt the ObjectKeys within this group.

Users are then able to access the keys needed to decrypt individual items without Dashlane’s
servers being able to.

To summarize:

« Each user has a pair of public and private RSA 2048-bit keys:
1. Public keys are used to encrypt information only a specific user can decrypt.
2. Private keys are used to sign actions users are performing.

+ For each credential or secure note shared, an intermediary AES 256-bit key is created and
used to perform data encryption and decryption.

1.13 Account Recovery

Dashlane has two recovery methods available for users: Admin-Assisted Account Recovery for
business users who login with a Master Password, and Account Recovery Key, available for all
consumer users.

1.13.1 Admin-assisted Account Recovery

Admin-Assisted Account recovery allows Dashlane Business users to regain access to Dashlane
by resetting User)p. Our patented process preserves zero-knowledge. Through account recov-
ery, master passwords are never stored on any servers nor transmitted in any form.

Our solution allows users to reset Usery and recover the data stored on an authorized device.
Accountrecovery is an optional feature admins can activate for their Dashlane Business account
in the Admin Console.

Toenable recovery, the user’s local key —itself encrypted with User,;, —is also encrypted using
a unique user recovery key, which is generated and used for all of the user’s devices when they
opt into account recovery. This user recovery key is then encrypted using a unique server-side
recovery key, which is only known to Dashlane and the user’s client devices. When an admin
enables account recovery, their public key is used to encrypt the server-side recovery key, which
as aforementioned, was already used to encrypt the user’s recovery key. An admin can then, via
their private key, later access the user’s recovery key protected by the server-side recovery key.

When a user requests account recovery, they are asked to verify their account and create a new
Useryp. A critical step of the recovery process is the verification of the identity of the user. It is
up to the admin, acting as a trusted third party, to ensure the user requesting recovery is indeed
the owner of the account. If an admin approves the request, the server-side recovery key, which
protects the user’s recovery key, is securely exchanged from the admin to the user through a
public/private key system. On the user’s device, the user’s recovery key is then decrypted using
the server-side recovery key, provided by Dashlane after the user’s identity and request have
been validated. The user’s recovery key is then used to decrypt the user’s local key, which in turn

is used to decrypt the user’s data. The recovered data is then re-encrypted with User,;p and re-
synced to the Dashlane servers.

As this process involves a master password change, all of the user’s devices have to be registered
once again to Dashlane for the user to access their newly encrypted data.

Important privacy note: the account recovery process relies on the admin being a trusted third
party. In case the Dashlane admin has access to both the user’s device and the user’s email used
as a Dashlane account, the admin would be in a position to trigger an account recovery from the
user’s device and get access to the user’s vault and personal data.

1.13.2 Account Recovery Key

Account Recovery Key allows users to set up a single-use recovery mechanism in order to
recover their data if they cannot access it anymore. The recovery key is a 28-character alphanu-
meric string that must be saved and confirmed by the user during setup. It is generated from
the user personal settings using password generator, and a key derived from it with user crypto
settings is used to encrypt the User,;p (AES-256 encryption). Once encrypted, it is sent and
stored on the server.

The Account Recovery Key mechanism can be disabled at any time from the user’s security
settings, invalidating the current account recovery key for the user.

In the event a user has forgotten their Master Password or lost access to all of their devices, the
user can initiate the recovery mechanism. First, the user must complete an additional identity
verification step, being either an email verification code or a 2FA token, depending on the
user’s security settings. Once identity verification is succesfully performed, the user inputs the
recovery code, and the server will release the encrypted User,;p to the client, which will attempt
to decrypt it with the Account Recovery Key. If successful, the user will be prompted to change
their Useryp.

Upon successfully completing the process, the current account recovery key is no longer valid.
A new account recovery key must be configured from the user’s security settings. The recovery
key will also be disabled after those 2 events: change of master password, and master password
to SSO Migration.

1.14 Dark Web Monitoring for Master Password

This feature allows Dashlane users to be alerted if their master password or an employee’s
master password has been identified in a data breach. To check if the master password of a
user is compromised, we are going to check if it is present in the databases resulting from the
various data leaks that we collect from third parties. We collect the data through API requests,
and transform all data into hashes using the Argon2 function before storing them on our servers.
When a user enters his master password on his mobile or Web application, we start by trans-
forming it using the Argon2 function and a salt* present in the client application, giving us a 32
bytes long hash.

4The salt we use is specific for this feature and different from the one used to build the user's encryption key

Dashlane-Security White Paper v3.0.1

Algorithm Iterations Mem.usage Parallelism Threads Hash length

Argon 2d v1.3 3 32768 2 2 32

Table 2: Argon2 configuration

To respect our zero-knowledge architecture, we use a process called “K-anonymity” to guaran-
tee that no one, not even Dashlane can access the master password. For this, the complete hash
never leaves the user’s device, but we only send the first three bytes of it to our servers and
compare those bytes to the entries we have in our database. If we have one or more matches,
we send the list to the users and finally, the application is able to make a complete comparison
between the local hash and the one(s) coming from Dashlane’s servers, and at the end, warn the
user if his master password has been found in a data leak.

Client

O]

User types his Master
Password

Monitoring flow

Master Password is !
hashed using the [Send the first three bytes
Argond2d function [

: .
O = e
v \ :
: ;

Compare the Returns the list of matching hashes

password with the -

: :
= e
'

database to

ones in the list. If
there is a match, an
alert is sent to the
USET.

Figure 7: Dark Web monitoring for Master Password flow
1.15 Activity Logs

Dashlane provides business customers with Activity Logs, a timestamped report available in the
Admin Console that lists actions taken by admins and team members in Dashlane. This feature
is important for Admins to gain insight on the security posture of your organization.

To produce this report, Dashlane generates two types of events:

+ Activity Logs: General events of members’ activity. These are generated by default on the
server-side.

+ Sensitive Activity Logs: Additional events generated by client applications and sent to an
endpoint to be collected on the server-side. Those logs aren’t enabled by default and require
Admins’ actions to be enabled.

Activity Logs are generated from various actions performed by team members and admins, with
the complete list of available events provided in Appendix Section A.

Activity Logs and Sensitive Activity Logs are first stored in a database for queuing purposes.
Then a batch cleans the queue and forwards events to an Object Storage for persistence. The
Object Storage is replicated on two different geographical zones (Ireland and Germany) to
achieve reliable storage of Activity Logs.

1-General Security Principles 18

Activity Logs can be recovered by Admins. This can be done in a two-steps process:

1. A query is sent to the server; the server replies with a query identifier.

2. Server can berequested with the query identifier to get the state of the query and eventually
get the result when the query has been finalized.

1.16 Credential Risk Detection

Credential Risk Detection is a Dashlane Business feature which allows admins to monitor weak
and compromised passwords being used by users in their organization that are not actively
using Dashlane (i.e. these users are not logged in). This is made possible by using an endpoint
management solution to deploy the Dashlane web extension on the browsers of team members
along with a configuration (also called policy in some endpoint management tools). This process
of distributing and installing the Dashlane extension to a number of devices simultaneously
via an endpoint management solution will sometimes be refered to as “Mass Deployment” in
this document. The configuration contains the information that will be included in the sensitive
activity log to allow the admin to identify the user as well as the MassDeploymentTeamy,, that
will be used to sign the request and link it to a team. As can be seen in Figure Figure 8 the
Admin triggers the generation of the MassDeploymentTeamy, from the Team Amin Console
(TAC). The key is then included in the automatically generated scripts that the admin will run to
deploy the configuration and mass deploy the Dashlane extension through his unified endpoint
management software.

Device
Admin TAC Dashlane Server Storage management
software
1. Click start setup

4. Return access and private keys

T N5 G s deployment
policies sci
-—
6. Display mass deployment key

7. Click download script

8. Downloaded policies script

9. Uplaad policies script

T 10, Deploy
employee's

ucces p
11. Success -

lane extension

ne to
employee's machines
14. Success I J iy

Figure 8: Credential Risk Detection Mass Deployment process

Dashlane-Security White Paper v3.0.1

Client App

Dashlane Servers Parent server Enclave Storage
(Ingged-out user)

user enters a
password on

website
1.1 Gee CRD config for team based on

MassDeploymerTeamKey Auth m

1.2 Return CRD pontig
alt [CRD is active]

T2 Verify if passward is weak
!
-—

3.1 Send compromised,password challenge

3.2 Respond to comprorhised password challenge
with candidate corppromised passwords

T =\4 Verify if passwdrd is compromised
.,r
-—

5.1 Store Adtivity Log including

atus of
password entered {"safe”| “compror "

"weak™)

m based on massDeploymentTeamKey
properties
rypted payload)

—_—

i
4——— (noaccess ta th

5.3 Transfer call to the enclave via parent server _
5.4. Decrypt pa
ancTypt t I

"~ team-specific teamEncrypeionKey

Inad. prepare and

-—

5.5 Upload encrypted log to Storage

World Wide Web Dashlane

Isolated environment of an enclave

Figure 9: Credential Risk Detection activity log upload

Once the extension and policies have been mass deployed to a team-member’s device the
risk detection process begins. As shown in Figure Figure 9, when said team-member enters a
password on the internet while not logged into Dashlane, the mass deployed extension will run
the following steps:

1. Get the Credential Risk Detection configuration from the servers to control that the feature
has been activated by the team admin.

2. Check if the entered password is “weak” (this check is based on an open-source password
strength estimator called zxcvbn® and happens locally).

3. Check if the entered password is “compromised” (these checks require information from
the server, we use the same process as described in Figure Figure 7 to complete this check
without uploading the password to the servers).

4. Based on the results of the previous checks, send a sensitive activity log (encrypted in transit
via an encrypted tunnel to the enclave and at rest by the enclave) to the secure enclave. The
encrypted payload of the log will contain the security status of the password entered: “com-
promised”, “weak” or “safe” in this order of priority (i.e. if a password is both “compromised”
and “weak” then it is classified as “compromised” as this considered a bigger threat).

1.17 Nudges

Nudges is a Dashlane Business feature through which admins can define a schedule to send
reminders to team members about security issues with the content of their vault. The users to
target are identified based on the data from the pre-exitising password health report. Admins
candefine a schedule for each type of vulnerability (weak, compromised and reused passwords).

Shttps://github.com/dropbox/zxcvbn

1-General Security Principles 20

Dashlane-Security White Paper v3.0.1

Nudges are sent to the end-users via a slack integration but new channels might be added in the

future. There are 3 major steps in the nudge lifecycle:

1. The admin installs the Dashlane slack app in their slack workspace and uploads the slack

token to the Dashlane servers (see Figure Figure 10). The permissions assigned to the slack

token are detailled in table Table 3.

The admin sets up / updates a nudge via TAC (see Figure Figure 11).

3. Aroutine on the Dashlane servers runs on a schedule and sends nudges to the relevant end-
users (see Figure Figure 12). The content of the nudges is generated based on fixed localized
templates that the Dashlane team maintains directly.

n

Admin TAC ER Cmenions Slack API Enclave Storage

1. Click install Dashlane Slack app

2. Redirect to store for manual install

3. Require confirmation and access to the Slack repo

4. Confirm intall and grant access

5. Request token

6. Redirect admin back to TAC with the token

7. Forward token and require install of nudges

[.8 Encrypt token using the
admin provisioning key

9. Store encrypted token

10. Display success
Isolated environment of an enclave
Figure 10: Dashlane Slack app installation
Mmi!.'l [L_Ii'u T 1 Dashlane Servers Storage
Admin Console) I =
1
Enable Mudge 1
1
1. Update team Mudge |
] > 2. Store Mudge configuration =
I -
I -
-« []
1
1
1
World Wide Web Dashlane

Figure 11: Nudge configuration

1-General Security Principles 21

Dashlane-Security White Paper v3.0.1

Slack API Dashlane Servers Storage 1 Parent server Enclave Storage 2

Routine
start

1. Feech nudge configs,
impacted teams and users

——
2. Compute Next run
fime based on nudge config

3. Request nitro to send nudge

* |4 Fetch encrypled slack oken
and decrypt inside enclave
e

-————
5. Request slack API to send slack

6. Compute Successes
and Failures

7. Store results in Activity Log

—
8. Process and
‘ancrypt for storage
9. Store Activity Log
—
‘World Wide Web Dashlane
[0 'solated envirenment of an enclave
[Schedule itine

Figure 12: Nudge routine

View permissions Send permissions

“View people in your workspace” “Send messages as @dashlane”

“View email addresses of people in your workspace” | “Send messages as @dashlane with a customized username and avatar”

Table 3: Permissions required by Nudges Slack token

The slack token being a sensitive piece of information, it transits to the nitro enclave via a
secure tunnel established between the Admin’s web extension and the enclave, and it is stored
encrypted with a team-specific encryption key which is available only to the admin via their
vault and to the enclave meaning the Dashlane team can never access it (see Figure Figure 10 &
Figure 12).

1.18 Machine Learning for Autofill and Phishing Detection

Dashlane leverages machine learning models to power both our autofill engine and real-time
phishing detection systems. These Al-powered features operate entirely on users’ devices,
maintaining our zero-knowledge architecture while providing intelligent form field recognition
and threat detection capabilities. This section details the different techniques employed in our
machine learning pipelines.

1.18.1 Privacy-First Data Collection

Our machine learning models are trained exclusively on data collected through internal crowd-
sourcing and publicly available sources, ensuring no user personal data is used in the training
process.

1-General Security Principles 22

As illustrated in the data collection pipeline Figure 13, our training data acquisition follows a
privacy-preserving methodology:

+ Internal Crowdsourcing: Internal team members voluntarily contribute anonymized form data

through our “Vortex for Dashlaners” tool, providing diverse real-world form patterns. We
remove all personally identifiable information through our redactor API.

+ Public Pages Crawling: We automatically collect phishing pages from publicly available

sources, including threat intelligence feeds, research databases, and open-source reposito-

ries.

MySQL s3
Hiles Static HTML &
metadatas & css
tags

Internal Redactor API Page storage API
crowdsourcing

F Y

Public pages crawling

Figure 13: Data collection pipeline

1.18.2 Model Architecture

Our machine learning approach prioritizes privacy and efficiency through the use of compact,
optimized models that can run entirely within browser extensions.

1.18.2.1 Model Development Pipeline

The machine learning development process follows these steps:

1.

Training with Scikit-learn: Models are developed using the open-source scikit-learn library,
focusing on lightweight algorithms such as Random Forest, Gradient Boosting, and Support
Vector Machines that provide excellent performance while maintaining small footprints.
Model Serialization: Trained models are initially serialized in Python’s PKL format for
development and testing purposes, allowing for comprehensive validation and performance
tuning.

ONNX Conversion: Production models are converted to the Open Neural Network Exchange
(ONNX) format, ensuring cross-platform compatibility and optimized inference performance
across different browser environments.

Runtime Optimization: The ONNX runtime is stripped of unnecessary components to mini-
mize the extension’s size while maintaining prediction accuracy.

1.18.2.2 Model Specifications

Our production models maintain the following characteristics to ensure optimal performance:

https://scikit-learn.org/
https://docs.python.org/3/library/pickle.html
https://onnx.ai/

Dashlane-Security White Paper v3.0.1

+ Size Constraint: Average model size remains under 3MB, ensuring fast loading times and

minimal impact on browser performance and memory usage.

+ Local Execution: All model inference occurs locally on the user’s device, with no data trans-

mitted to external servers, preserving our zero-knowledge architecture.
Performance Optimization: Models are optimized for real-time inference, typically completing
predictions within 50-100 milliseconds to provide seamless user experience.

1.18.3 Feature Extraction

Both autofill and phishing detection rely on local webpage analysis to extract relevant features
for model inference, ensuring data remains on the user’s device.

1.18.3.1 Autofill Feature Extraction

As demonstrated in the login form analysis diagram Figure 14, our autofill system follows a
three-step process for comprehensive form field analysis:

1.

1

Detection: The system first identifies the presence and location of forms and pseudo-forms

within the webpage DOM structure, including dynamically generated form elements that may

not follow standard HTML patterns.

Scraping: Once forms are detected, the system extracts critical information from each field,

including:

+ Human Readables: Visible text such as labels, placeholders, and surrounding contextual
content

+ HTML Attributes: Technical field properties including names, IDs, classes, and input types

Auto Labelling: We use generative Al models on our internal database to automatically

label forms and fields, enabling accurate supervised learning without manual annotation

overhead.

L T

Scraping

L Sarree
| 2]
Puspwory
Faan i Dged M (OF UD 1D SN yoarn L.‘,l'_f 1 . fr i L _I P
” WL IS e IO O
T Auto Labelling this field 2
Detection

‘username’

Figure 14: Feature extraction for autofill

.18.3.2 Phishing Detection Feature Extraction

Our phishing detection system analyzes multiple webpage characteristics to identify potential
threats Figure 15 (more info):

URL Analysis: URL structure anomaly detection helps identify suspicious destinations.

1-General Security Principles 24

https://www.dashlane.com/blog/ai-powered-phishing-security

Dashlane-Security White Paper v3.0.1

+ Content Indicators: Detection of suspicious text patterns, deliberate misspellings, and brand
mimicry attempts that are common in phishing attacks.

+ Structural Anomalies: Identification of hidden form fields, unusual redirect patterns, iframe
abuse, and other technical indicators of malicious intent.

- (D) =) BEE=E -

[J..og.ju I

Spomsnsace

Figure 15: Example of extracted phishing indicators on Wikipedia
2 Single Sign-On (SSO)

Dashlane integrates with SSO Identity Providers (IdPs) that use the SAML 2.0 open standard
authentication protocol, such as Okta, Azure AD, and ADFS. This integration allows employees
to unlock their Dashlane vaults with their SSO credentials rather than their Master Password.
To maintain Dashlane’s zero-knowledge architecture, the SSO integration requires an SSO
connector to store the user data encryption keys and deliver them upon user authentication. You
can either self-host the SSO connector inside your own infrastructure or opt to have it hosted by
Dashlane in a secure enclave.

If you choose the self-hosted option, the SSO connector acts as the service provider in the SAML
workflow. Dashlane distributes the service, and you host and manage it as a server component,
either on-premises or in the cloud. To preserve the zero-knowledge principle, the SSO connector
stores the first part of the data encryption key (64 random bytes), and Dashlane’s cloud servers
store the other half (another 64 random bytes). Upon successful authentication and retrieval of
both key parts by the Dashlane app, they are compared using the Boolean logic operation XOR,
generating another 64-byte key that decrypts or encrypts the user data. If Dashlane hosts and
manages the SSO connector, the zero-knowledge principle is enabled by the secure enclave —
an environment that isolates the data and processes of the computing unit from the operating
system and other processes on the host machine. The secure enclave encrypts the storage
data and has an attestation mechanism to ensure that only authorized code can process the
data. Dashlane cannot access the user encryption keys or any other data the SSO connector
processes.

2-Single Sign-0On (SSO) 25

2.1 Introduction

Dashlane Business supports login with single sign-on (SSO), using any SAML 2.0 enabled IdP.

In a single-sign-on setup, the user doesn’t have to input User,;p. Instead, a random key is gener-
ated at account creation. This key (the data encryption key) is delivered to the Dashlane app after
the user successfully logs in to the IdP, and it is used as a symmetric encryption key to encrypt
and decrypt the user data.

This section details how the key is stored and delivered to the user in order to make sure that
the zero-knowledge principle is maintained.

2.2 General Principle

The integration of SSO with the Dashlane app requires an entity storing users’ encryption keys
and delivering them upon authentication. This entity has the knowledge of every user’s key, soit’s
highly sensitive. Moreover, Dashlane can’t host such an entity without more concerns because
this would break our zero-knowledge principle by providing us access to the encryption keys of
our users.

The previous entity in charge of users’ encryption keys is called the Encryption Service and it

could be hosted two different ways to follow our zero-knowledge rule:

+ Self-hosted: the Encryption Service is a server deployed inside the infrastructure of Dashlane
Business customer.

+ Hosted in a secure enclave by Dashlane: the Encryption Service is a service running in
Dashlane infrastructure, in a secure enclave to respect our zero-knowledge principle.

2.3 Single Sign-On with the Self-Hosted Connector

2.3.1 Overview
To avoid storing all the keys in one place, the data encryption key is composed of 2 parts:

+ 64 random bytes held by the Encryption Service.
« 64 random bytes held by Dashlane’s servers in the cloud.

The Encryption Service is a server component that the customer operates (either in the cloud or
on premises). It acts as the service provider in the SAML 2.0 flow. After a successful authenti-
cation to the Encryption Service using SAML, the first part of the key is delivered to the Dashlane
client application along with a token that allows it to get the second part from the Dashlane
server.

Once both parts of the keys are retrieved by the client app, they are XORed together, and the
resulting 64 bytes are used as a symmetric key to encrypt and decrypt user data.

This system ensures zero-knowledge as the first part of the key and is only known by the
Encryption Service and the client app, both of which are managed by the customer.

It also makes sure that a compromised Encryption Service cannot be used to fetch the keys of
users without leaving traces on Dashlane servers (an API call to the Dashlane server is required
to fetch the second part of the key).

2.3.2 Services

Dashlane Server/API (API) The servers operated by Dashlane in the cloud, where user data is
stored encrypted.

Encryption Service (SP) A service acting as the service provider in the SAML 2.0 flow. The
service is distributed by Dashlane, but it's hosted and managed by the customer on premises or
in the cloud.

Identity Provider (IdP) The SAML 2.0 identity provider (e.g. ADFS, Azure AD, Okta) of the cus-
tomer. This service is not provided by Dashlane. It is operated by the customer or by a third party.

2.3.3 Keys, secrets, and certificates

IdP key and certificate (/dPx., / IdPc.) Public and private keys of the IdP. The private key is held
by the IdP, while the certificate needs to be provided to the SP in the configuration file. It is used
by the IdP to sign and by the SP to verify the SAML assertions.

Master SP Key / Encryption Service Key (Master_SPyx,) A 64 bytes secret key, generated
randomly by the Team Admin Console (client side). It is stored in the configuration file of the
SP, and is only known by the Team Admin. It is used by the SP to encrypt/decrypt the User_SPye,
before storing them in the API.

User SP Key (User_SP.,) A 64 bytes secret key, generated randomly by the SP. It is stored and
encrypted in the API.

User Server Key (Serverge) A 64 bytes secret key, generated randomly by the client. It is stored
unencrypted in the API.

User vault key (Vaultk.,) User_SPx., oplus Server.,. It is used by the client to encrypt/decrypt
users’ data before storing them in the API.

Dashlane-Security White Paper v3.0.1
2.3.4 Workflow
User Device Encryption Service IdP Dashlane Servers
Clientapp has 0/ 2
keys
Request SSO Authentication
Trigger SAML Flow
Login with SSO
Return Signed SAML Assertion
Submit Signed SAML Assertion
Check the SAML
Assertion is valid
Generate a random
user_sp_key and
encrypt it with
master_sp_key
Send encrypted user_sp_key
Store encrypted
user_sp_key if none
exist for this user
Else: Fetch the
existing encrypted
user_sp_key
Generate random
sso_token
Return existing or newly registered encrypted user_sp_key +
sso_token
Decrypt
user_sp_key using
master_sp_key
Return user_sp_key + sso_token
Clientapphas 1/2
keys
Request server_key (authenticating with sso_token)
Check sso_token
Return server_key
Clientapphas 2 /2
keys
Compute
vault_key=XOR(use-
r_sp_key,
server_key)
User Device Encryption Service 1dP Dashlane Servers
Figure 16: Self-Hosted SSO Workflow
2-Single Sign-0n (SSO) 28

Dashlane-Security White Paper v3.0.1

2.4 Single Sign-On with the Dashlane-Hosted Connector

2.4.1 Overview

In the Dashlane-hosted connector setup, the Encryption Service service is hosted and managed
by Dashlane. To prevent Dashlane from accessing users’ encryption key, breaking the zero-
knowledge principle, the Encryption Service runs in a so-called secure enclave.

A secure enclave is aterm coming from the field of trusting computing. This is the name given to
an isolated computing unit or a Trusted Execution Environment (TEE). This technology provides
a way to process data inside an environment that is not readable by any other process of the
hosting machine besides the process running inside the enclave. Moreover, secure enclaves can
generate attestation with the fingerprint of the code they run. This way, clients communicating
with an enclave can get assurances of the code they are communicating with and decide if they
trust this code to process their data.

Secure enclaves are just computing units with CPU and volatile memory resources. They are not
provided with persistent storage. To circumvent this problem, a Key Management Service (KMS),
which can authenticate that requests are coming from trusted enclaves, is required to encrypt
the storage of secure enclaves.

Dashlane leverages secure enclave technology to run a Encryption Service service without
being able to access users’ encryption keys processed by the Encryption Service.

2.4.2 Cryptographic materials

Dashlane confidential SSO workflows require a lot of cryptographic keys and certificates
defined in the table Table 4. All keys defined is 32 bytes long.

Key Name Key Symbol Description

Enclave Master Key EMyey Key generated and stored within the KMS in order
to encrypt/decrypt SEL#sub[Key]$

Enclave Local Key Elkey Key generated within the KMS at the first enclave
bootstrap and sent to this enclave in order to derive SEE#sub[Key]$S

Enclave Unseal Key EUkey Key generated by the deployment process at
the first bootstrap and sent to the enclave,
in order to derive SEE#sub[Key]$

Enclave Encryption Key EExey Key derived from SEL#sub[Key] \oplus EU#sub[Key]$ in order to encrypt
SSPMaster#sub[Key]$S

Service Provider Master Key | SPMastery,, | Key generated within the enclave on a new team
registration in order to encrypt/decrypt SUserSP#sub[Key]$

User Service Provider Key UserSPyey, Key generated within the enclave when the user is
provisioned for SSO authentication,
in order to encrypt SRemote#sub[Key]$

SSO Server Key SSOServery, | Generated by the server at account creation,
in order to encrypt SRemote#sub[Key]$

Remote Key Remotexe, Generated by the client at account creation,
in order to encrypt user's vault

Identity Provider Certificate 1dPcert Certificate of public key of the IdP to verify
SAML assertion

Table 4: Cryptographic keys and certificates implied in Dashlane-hosted workflows

2-Single Sign-0On (SSO) 29

Dashlane-Security White Paper v3.0.1

2.4.3 Workflows

for enclave at init
= Decrypt key for enclave on
reboot
erify enclave running code
with enclave attestation

Dashlane ! o '

H System initialization H

c'ol:) KMS . i
» Generate and encrypt key | Send enclave local key

Encrypted with an enclave public key

Share enclave unseal key

'
' :

H Secure channel
'

'

a Deployment process

o Send IdP certificate
CO Secure channel

g Datastore | : '
Il ! B
Data encrypted by/for the enclave i
« Store encrypted data from H
from the enclave !
1 ! N
) I
1 - ‘I :
: Team admin | [:
1 1 N
! 1dp ! i
1 1 '
' @ g Request team creation |
' = 4 Secure channel H
1 o I |
1 c 1 '
: ‘c = :
\ DNS challenge
!
i Admins
1
!
!
!
!
1
1
1
!
'

........................

' I

. Team user | User authentication \

| 1dP ! i

' | '

i . Send SAML assertion signed by IdP E

' lsbcd?!l 1 Secure channel '
CR ‘ ‘

: (| ' |

; : 5

: : .

E V Send User Service Provider Key

ll

ll

ll

'

'

'

Figure 17: Dashlane-Hosted SSO Workflow

2.4.3.1 Enclave initialization step

The first step is to generate an Enclave Master Key in the KMS and to build access policies to
that Enclave Master Key so access is granted only to the enclave. This is done by basing policies
on information provided by the attestation of the enclave: when the KMS get a request for the
Enclave Master Key, it matches the attestation provided with the policies to grant or deny the
request.

Then, the enclave is deployed and requests the KMS to generate an Enclave Local Key and to
securely send back to the enclave two versions of the Enclave Local Key: one encrypted by the
Enclave Master Key and one encrypted with an ephemeral public key provided by the attestation.
The enclave requests the storage of the encrypted Enclave Local Key and keeps the plaintext
Enclave Local Key in this volatile memory. This way, if the enclave reboots or a new instance
is deployed, the instance will then request from the storage the encrypted Enclave Local Key

2-Single Sign-0On (SSO) 30

Dashlane-Security White Paper v3.0.1

then the KMS will decrypt it with the Enclave Master Key. This way, the enclave is provided with
the Enclave Local Key to encrypt data, and the Enclave Local Key is never in plaintext outside a
secured environment; the enclave or the KMS.

Figure Figure 18 describes the workflow to provide secure enclaves with ELy, .

Parent server Enclave KMS Storage

L. Generate Enclave
__ﬁ‘\-\ Master Key (EMkey)

2. Request for Enclave Local .__/

Key (ELkey) generation

3.a Generate ELkey

ﬁib Encrypt ELkey with EMkey

—

4. Return ELkey + EMkey(ELkey)

5. Request EMkey(ELkey) storage

6. Store EMkey(ELkey)

Enclave

7. Request EMkev(ELkey) from storage

8. Recover EMkey(ELkey) from storage

9. Forward EMkey(ELkey)

10. Request to decrypt EMkey(ELkey)

ﬁu, Decrypt ELkey with EMkey

12. Return ELkey

13. Send EUkey
__“‘\ 14, Calculate EEkey=ELkey xor EUkey

-

Deployment

process.

Encrypted with enclave ephemeral public key

Figure 18: Dashlane Confidential SSO Initialization

Then, the deployment process can mount a secure channel (based on the attestation of the
enclave) to send EUy,, to the enclave. This way, the secure enclave can derivate the Enclave
Encryption Key as follows: EEy,, = ELg,.0 + EUg,,

2.4.3.2 Storage of the secure enclave

A secure enclave is a runtime environment with no persistent storage. Data needs to be
encrypted before being passed through the parent server toward the datastore.

Data within the secure enclave requiring persistent storage are the following:

» the Enclave Local Key ELy,,, encrypted by the Enclave Master Key EM,,, .

- Service Provider Master Keys SPMastery,, of each team, encrypted by the Enclave Encryption
Key EE.-

- User Service Provider Keys UserSPy,, of each user, encrypted by the SPMastery,, of their team.

2-Single Sign-0On (SSO) 31

2.4.3.3 Team creation

The team creation step is the configuration of the SSO for an organization: the enclave is
provided with the IdP certificate to verify SAML assertions for authenticating users of a domain
(e.g users with an email from a given domain). The enclave still needs to verify that the admin
performing the operation is the owner of the claimed domain: this is to prevent anyone from
providing a rogue IdP certificate for a domain they don’t own. Indeed, SSO is based on the
domain of the email of the user. For example, if a user requests to log in with the username
user@example.com, and the domain “example.” + “com” is linked to an IdP, the user will go through
the authentication flow with that IdP. This way, registering an IdP for a domain is a sensitive
operation, requiring the secure enclave to perform the domain verification.

The team creation flow is described in Figure Figure 19

A

P

Admin App Idp Parent server Enclave Storage

1. Retrieve the 1dP certificate

2. Handshake to build the secure channe

3. Send IdP certificate + domain

4. Return DN challenge

5. Admin configures the DNS challenge - Enclave validates the domain with the challenge

“B:Sign the IdP certificate + domain
+ metadata with Kelk
7. Generate SPMasterkey then
9. Request storage for signed 1dP el t with Kelk: Kelk(SPMasterkey)
certificate + domain and Kelk(SPMasterkey) 8.G ite admin token then
and Kelk{ Tadmin) encrypt with Kelk: Kelk(Tadmin)

10. Store signed IdP certificate + domain [+ Kelk(SPMasterkey) + Kelk({ Tadmin)

11. Send back Tadmin

‘World Wide Web Dashlane

Isolated environment of an enclave

Figure 19: Dashlane Confidential SSO Team Creation Flow

. IT admin of the organization configures the IdP and gets the URL for the IdP endpoint and

the IdP certificate of the key, which will sign further users’ proof of authentication; IT admin
starts the configuration flow of the SSO in the Admin application.

The Admin application performs a handshake with the enclave to build a secure channel.
Through the secure channel, the client application sends the IdP certificate and domain;
this is done in the secure channel to protect the IdP certificate’s integrity (to prevent the
certificate from being replaced in transit by a rogue certificate).

The enclave sends back a random value to initiate the verification of the domain.

IT Admin and enclave perform the DNS challenge: the goal is to let the enclave confirm that
it is speaking with an owner of the claimed domain; for that, the IT Admin has to place the
random value at the root of the domain and then the enclave can check this value with the

10.

11.

DNS (better with a secured version of the protocol); this way, the enclave validates that the
IT admin is the owner of the claimed domain.

The enclave generates a Message Authentication Code (MAC) for the IdP certificate +
domain + metadata from EEy,,.

The enclave generates the Service Provider Master Key for the domain SPMaster,y, then
encrypts it with EEg,.

The enclave generates a token to authenticate admins of the domain (the token will be
shared between admin accounts of the domain), then encrypts it with EE,, .

The enclave requests the parent instance to store the signed IdP certificate + domain, the
encrypted SPMastery,,, and the encrypted token admin.

The parent instance stores the signed IdP certificate + domain, the encrypted SPMaster,,
and the encrypted token admin.

The instance sends back the token admin through the secure channel.

2.4.3.+ User SSO login

After the team creation, a user can expect to open their vault with the SSO flow. Reaching the
login page of their client application which redirects them to the login page of their IdP. After the
IdP authenticates the user, it redirects the user to the client application with a SAML assertion
proving their identity. Then, the client application can send the assertion to the Encryption
Service to receive back UserSPy,,, decrypting the user’s vault.

Until the proof of authentication is sent, the flow is the same for users who perform their first
login and users who have already enabled their account.

The beginning of the flow is described by Figure 20

Client App Idp Parent server Enclave Starage

1. Request secret key

2. Authentication required; Redirect to IdP -

3. Authenticate to 1dP

4. Return proof of authentication

5. handshake to build secured channel

6. Send proof of authentication

dte + domain and encrypted SPMasterkey

9. Farward stored elements to enclave

= 12, Decrypt SPMasterkey with Kelk

‘World Wide Web Dashlane

Isolated environment of an enclave

Figure 20: Dashlane Confidential SSO-User Login Flow

From this point, the user is authenticated in the enclave. The flow diverges between the first
connection account and already enabled account.

Dashlane-Security White Paper v3.0.1

Client App 1dP Parent server Enclave Storage

T 13- Generate Users Pley
14, Encrypt UserSPkey with
T Soasterkey
15. Request storage - S ¥
16. Store Entry&u d UsersPhey

World Wide Web Dashlane

17. Send the UserSPkey

Isolated enviranment of an enclave

(a) First login

Client App 1dp Parent server Enclave Storage

13. Retrieve sn;?lvmd UserSPkey

14. Forward encrypted UserSPkey

)15, Decrypt UserSPkey with
._J SPMasterkey

16. Send the UserSPkey

World Wide Web Dashlane

Isolated envirenment of an enclave

(b) Standard login
Figure 21: Dashlane-Hosted SSO-User Login Flow Part 2

After users are authenticated (the signature of their proof of authentication is verified) for first
connection, the workflow is as described in Figure 21.a:

13. The enclave generates the UserSPye,.

14. The enclave encrypts UserSPy., with SPMastere,.

15. The enclave requests the parent server store SPMastery,(UserSPke,).

16. After confirmation that SPMastery.,(UserSPye,) is stored, the enclave sends back to the client
application the UserSPx.,, encrypted in the secure channel.

After users are authenticated (the signature of their proof of authentication is verified), for an
account already enabled, the workflow is as described in Figure 21.b:

13. The parent server retrieves SPMasterg.,(UserSP.,) from the storage.

14. The parent server forwards stored elements to the enclave.

15. The enclave decrypts the SPMasterye,(UserSPxey).

16. The enclave sends back to the client application the UserSPx., encrypted in the secure
channel.

2-Single Sign-0On (SSO) 34

2.4.3.5 SCIM User provisioning

The admin can configure confidential user provisioning in the Team Admin Console (TAC). To
complete this configuration the Dashlane extension generates a bearer token using uuidv4. This
bearer token is then transmitted via a secure tunnel to the secure enclave where it is encrypted
and stored.

In the meantime, the admin manually adds this token in their IdP along with the URL of the team-
specific SCIM endpoint where the IdP should send the updates (the later is provided to the admin
in TAC).

Once these configuration steps are completed, updates can start being sent by the IdP to the
enclave via HTTPS requests. As seen in figure Figure 22, the enclave validates the SCIM bearer
token before forwarding the operations to the Dashlane servers to update the users accordingly.
On user creation the enclave will generate a Uuid (scimld) and return this identifier to the IdP so
that the IdP and Dashlane can share a common identifier for this SCIM user in the future.

Admin 1dP Parent server Enclave Storage

1. Update user in IdP

2. Push user updatg M Dashlane Servers

4. Get team and
decrypt team device credentials

5.GET/POST/DELETE / PUT / PATCH user

6. Return result (new user))
“

‘World Wide Web Dashlane

O Isolated environment of an enclave

Figure 22: Dashlane Confidential User provisioning

2.4.3.6 Group provisioning
If activated by the admin in TAC, confidential group provisioning happens at user login.

It is based on the SAML assertion which is transmitted during the SSO-login flow, as described
in figure Figure 23.

When a user logs into Dashlane with SSO the enclave receives from the extension a SAML
assertion which includes the names of the groups said user is a member of. The enclave then
gets the groups associated to that team from the Dashlane server and determines:

+ new groups to be created,

+ existing groups to invite the user to,

+ existing groups to revoke the user from.

The Dashlane server is called to execute these actions. This group provisioning flow is idempo-
tent: We receive a list of groups the user is supposed to be a member of, and by the end of the
flow the user is a member of each of them and no other.

The list of groups is signed by the IdP as part of the SAML assertion and the secure enclave
validates this signature. This check guarantees that the list of groups has not been tampered
with by a third party.

Dashlane-Security White Paper v3.0.1

Security Model of Group Provisioning

Group Provisioning can give access to shared secrets, making it highly sensitive.

The SCIM protocol doesn’t provide a way to authenticate an enclave on the IdP side, posing
a risk for group provisioning inside our boundaries. SAML assertions are preferred because
they transit through the secure tunnel created by the extension and are signed by the IdP.
This way, group provisioning can’t be tampered with.

Client App 1dp Parent server Enclave Storage Dashlane Servers

1. Request secret key

2. Authentication required; Redirect to 1dP

3. Authenticate to 1dP

4. Return proof of authentication

5. handshake to build secured channel

-«

6. Send proof of authentication (SAML assertion) including group info 7. Forward proof of authentication

8. Recover from storage pigned 1dP certificate
+ domain and encrypfefl SPMasterkey

9. Forward stored elements to enclave

Verify signature of signed 1dP
certificate + domain with Kelk
11. Verify proof of authentication

12. Decrypt SPMasterkey with Kelk

13. Update user's sharing group membership
reate groups, invite to groups. revoke from groups)

‘World Wide Web Dashlane

Isolated environment of an enclave

Figure 23: Dashlane Confidential Group provisioning

3 Impact on Potential Attack Scenarios

Dashlane has embedded a variety of security protocols into the architecture to prevent user data
compromise due to an attack from external or internal malicious actors. Some examples of these
protocols include:

+ Separation of the key for encrypting the user data and the key for authenticating the user
on the Dashlane server, which ensures user data encryption keys are not stored anywhere
and cannot be accessed by Dashlane employees or by attackers if the Dashlane servers are
compromised.

+ Web protection measures including anti-clickjacking provisions, which prevent rogue websites
from triggering a malicious click and extracting data from the Dashlane app; and same-origin
policy, which only autofills a saved password on exact URL subdomains.

+ Using the Argon?2 function, which protects the encrypted user data against brute-force or
dictionary attacks.

3-Impact on Potential Attack Scenarios 36

Dashlane-Security White Paper v3.0.1

3.1 Minimal Security Architecture

Cloud services can use a single private secret, usually under their control, to encrypt all user
data. This is obviously a simpler choice from an implementation standpoint, plus it offers the
advantage of facilitating deduplication of data, which can provide important economic benefits
when the user data volume is high. Obviously, this is not an optimal scenario from a security
standpoint since if the key is compromised (hacker attack or rogue employee), all user data is
exposed.

[Rogue employee / External hackers]

AES user data files stolen

[)

Large-scale brute force attack Company secret key theft
Access to user data Access to user data

Figure 24: Potential Attack Scenarios With Minimal Security

3.2 Most Common Security Architecture

A better alternative is to use a different key for each user. The most common practice is to
ask the user to provide a (strong) Usery;, and to derive the encryption key for each user from
their User,;p. However, to keep things simple for the user, many services or applications tend to
also use the as an authentication key for the connection to their services. This implies that an
attacker could access a user’s vault by just knowing the Master Password. It could also easily
lead to implementation errors (missing salt/rainbow tables attacks, wrong/weak hashing, etc.).

3-Impact on Potential Attack Scenarios 37

Dashlane-Security White Paper v3.0.1

[Rogue employee / External hackers]
AES user data Master Passwords
files stolen hash massive theft
User MP
Large-scale brute force attack Access to user data

impossible (each vault needs
to be attacked separately)

Figure 25: Potential Attack Scenarios With Most Cloud Architecture

3.3 Dashlane Security Architecture

To make this attack scenario impossible, we have made the decision to separate the key used for
user data encryption and the key used for server-based authentication (see Figure 26). The user
data is encrypted with a key, which is a derivative of Usery;p or MachineGenerated,;p. A separate
Devicey,, (unique to each device-user couple) is used to perform authentication on Dashlane
servers. Deviceg,, is automatically generated by Dashlane. As a result:

« Encryption keys for user data are not stored anywhere.
+ No Dashlane employee can ever access user data.

+ User data is protected by User,;p or MachineGenerated,;p even if Dashlane’s servers are com-
promised.

3-Impact on Potential Attack Scenarios 38

Dashlane-Security White Paper v3.0.1

[Rogue employee / External hackers]
AES user data User Device
files stolen Keys hash stolen
User Device
Large-scale brute force attack AES user data
impossible (each vault needs to be files stolen
attacked separately) l

Large-scale brute force attack
impossible (each vault needs to be
attacked separately)

Figure 26: Potential Attack Scenarios With Dashlane’s Security Architecture

Even if this scenario happens, a rogue employee or an external hacker would have a very hard
time executing a brute force or dictionary attack on the AES user data files, as we use the
Argon2d (or PBKDF2-SHA?) algorithm. As the user’s data is encrypted using a salted key, which
is a derivative of User,;p or MachineGenerated,;p, N0 precomputed attacks should be possible.

3.4 Anti-Clickjacking Provisions

To protect Dashlane users from rogue websites that would attempt to use clickjacking tactics
or other JavaScript-based attacks to extract data from the Dashlane application, we have made
sure none of the webpage-based interactions involving user data unrelated to this website use
JavaScript.

The popups used to trigger form-filling on a webpage use various browser security APIs to pre-
vent control from the JavaScript of the visited page. As a result, a rogue website cannot trigger
a click that would cause Dashlane to believe that the user has actually clicked, and therefore,
cannot extract information unless the user explicitly clicks in the field.

3.5 Same-Origin Policy

Dashlane automatically logs users into websites. To avoid providing users’ information to rogue
websites, the same-origin policy is always respected.

First, a credential saved by Dashlane when it has been used on a website with the URL of
mysubdomain.mydomain.com will not be automatically filled on another website with the URL
of myothersubdomain.mydomain.com. This prevents the credential of a specific website from
being provided to another website that share the same top-level domain name.

Also, a credential saved by Dashlane when it has been used on a website with a URL beginning
with https will not be automatically filled on another website with a URL beginning with http.

3-Impact on Potential Attack Scenarios 39

Dashlane-Security White Paper v3.0.1

3.6 Memory Protection

A problem can arise if an attacker takes control of the user’s client device. In that scenario, the
attacker could retrieve the decrypted user data from the memory.

Thisisanextreme scenario as, in that case, the attacker can take control of many parts, including
adding a keylogger to capture Usery;p or PIN Code for passwordless users.

+ Mobile operating systems (Android, iOS) ensure that no process can ever access the memory
of another process and are not directly affected.

Finally, we believe the system integrity and security between processes is a system function
and Dashlane cannot (and should not) reinvent the wheel and add useless complexity that could
lead to other vulnerabilities and have negative side-effects.

3-Impact on Potential Attack Scenarios 40

Dashlane-Security White Paper

v3.0.1

Appendices

A Activity Log - List of Events

A1 Default Activity Logs

Event Name Event Message

master_password_reset_accepted

Accepted an Account Recovery request from [email]

master_password_reset_refused

Denied an Account Recovery request from [email]

user_device_added

Added the device [name]

user_device_removed

Removed the device [name]

requested_account_recovery

Requested Account Recovery

completed_account_recovery

Recovered their account through Account Recovery

dwm_email_added

Added [email] to Dark Web Monitoring

dwm_email_removed

Removed [email] from Dark Web Monitoring

user_group_created

Created a group named [groupName]

user_group_renamed

Renamed the [oldGroupName] group to [newGroupName]

user_group_deleted

Deleted the [groupName] group

user_joined_user_group

Joined the [groupName] group

user_invited_to_user_group

Invited [email] to the [groupName] group

user_declined_invite_to_user_group

Declined to join the [groupName] group

user_removed_from_user_group

Removed [email] from the [groupName] group

team_name_changed

Changed your company name to [name]

new_billing_period_created

Extended your account until [date]

seats_added

Added [count] seats to your account

domain_requested

Added [domain] as an unverified domain

domain_validated

Verified the domain [domain]

collect_sensitive_data_audit_logs_enabled

(user) turned on unencrypted vault logs

collect_sensitive_data_audit_logs_disabled

(user) turned off unencrypted vault logs

sso_idp_metadata_set

Updated SSO identity provider metadata

sso_service_provider_url_set

Configured SSO service provider URL

sso_enabled

Enabled SSO

sso_disabled

Disabled SSO

contact_email_changed

Changed contact email to [email]

master_password_mobile_reset_enabled

Turned on biometric recovery for [deviceName]

two_factor_authentication_login_method_added

Activated a 2FA method

two_factor_authentication_login_method_removed

Removed a 2FA method

user_invited

Invited [email] to your account

user_removed

Revoked [email] from your account

team_captain_added

Changed [email] to admin rights

team_captain_removed

Changed [email] to member rights

group_manager_added

Changed [email] to group manager rights

group_manager_removed

Changed [email] to member rights

A-Activity Log -List of Events

41

Dashlane-Security White Paper v3.0.1

Event Name Event Message

user_reinvited Resent an invite to [email]

billing_admin_added Made [name] the billing contact
billing_admin_removed Revoked [name] as the billing contact
nitro_user_provisioning_activated Activated confidential user provisioning
nitro_user_provisioning_deactivated Deactivated confidential user provisioning
nitro_group_provisioning_activated Activated confidential group provisioning
nitro_group_provisioning_deactivated Deactivated confidential group provisioning
nitro_siem_activated Activated export of activity logs to SIEM provider
nitro_siem_edited Edited the configuration of the SIEM integration
nitro_siem_deactivated Deactivated export of activity logs to SIEM provider
nitro_integration_app_installed Installed [integration_app] integration
nitro_integration_app_uninstalled Uninstalled [integration_app] integration
nudge_configured Set [nudge_name] to [status]

nudge_executed Nudged [successes] users for [nudge_name]
user_received_nudge Received [nudge_received] nudge
mass_deployment_configuration_updated Set mass deployment risk detection to [status]

Table 5: Dashlane Activity Logs

A-Activity Log-List of Events 42

Dashlane-Security White Paper

v3.0.1

A.2 Additional Sensitive Activity Logs

Event Name Event Message

collect_sensitive_data_audit_logs_enabled

(user) turned on additional activity logs (unencrypted)

collect_sensitive_data_audit_logs_disabled

(user) turned off additional activity logs (unencrypted)

user_shared_credential_with_group

(user) shared [rights [limited/full]] rights to the [domain]
login with [group]

user_shared_credential_with_email

(user) shared [rights [limited/full]] rights to the [domain]
login with [email]

user_shared_credential_with_external

(user) shared [rights [limited/full]] rights to the [domain]
login with the external user [email]

user_accepted_sharing_invite_credential

(user) accepted a sharing invitation for the [domain]
login

user_rejected_sharing_invite_credential

(user) rejected a sharing invitation for the [domain]
login

user_revoked_shared_credential_group

(user) revoked access to the [domain] login
from [group]

user_revoked_shared_credential_external

(user) revoked access to the [domain] login
from the external user [email]

user_revoked_shared_credential_email

(user) revoked access to the [domain] login
from [email]

user_created_credential

(user) created a login for [domain]

user_modified_credential

user) modified the login for [domain]

user_deleted_credential

(user)
(user)

user) deleted the login for [domain]

user_created_collection

(user) created a Collection [name]

user_imported_collection

(user) imported [#] logins into the Collection [name]

user_added_credential_to_collection

(user) added the login for [domain] to the Collection [name]

user_removed_credential_from_collection

(user) removed the login for [domain] from the Collection [name]

user_renamed_collection

(user) modified the name for the Collection [name]

user_shared_collection_with_user

(user) shared Collection [name] with [roles] role with [email]

user_shared_collection_with_usergroup

user) shared Collection [name] with [roles] role with [group]

user_accepted_collection_invite

user_rejected_collection_invite

(user)
(user) accepted the sharing invitation to the Collection [name]
(user)

user) rejected the sharing invitation to the Collection [name]

user_added_credential_to_shared_collection

(user) added the [domain] login with [rights] to to the Collection [name]

user_updated_collection_usergroup

(user) updated [group] from [roles] role to [roles] role for the Collection [name]

user_updated_collection_user

user) updated [email] from [roles] role to [roles] role for the Collection [name]

user_revoked_collection_usergroup

(user)
(user)

user) revoked access to the Collection [name] for [group]

user_revoked_collection_user

(user) revoked access to the Collection [name] for [email]

user_typed_password

(user) typed [security_status [weak/compromised]] password on [domain_url]

Table 6: Dashlane Sensitive Activity Logs

A-Activity Log -List of Events

43

Dashlane-Security White Paper v3.0.1
L3
A.3 Diagrams
User Device Encryption Service IdP Dashlane Servers
Clientapp has 0/ 2
keys
Request SSO Authentication
Trigger SAML Flow
Login with S50
Return Signed SAML Assertion
Submit Signed SAML Assertion
Check the SAML
Assertion is valid
Generate a random
user_sp_key and
encrypt it with
master_sp_key
Send encrypted user_sp_key
Store encrypted
user_sp_key if none
exist for this user
Else: Fetch the
existing encrypted
user_sp_key
Generate random
sso_token
Return existing or newly registered encrypted user_sp_key +
sso_token
Decrypt
user_sp_key using
master_sp_key
Return user_sp_key + sso_token
Clientapp has1/2
keys
Request server_key (authenticating with sso_token)
Check sso_token
Return server_key
Clientapp has 2/ 2
keys
Compute
vault_key=XOR(use-
r_sp_key,
server_key)
User Device Encryption Service IdP Dashlane Servers
Figure 27: SSO Flow
A-Activity Log-List of Events 44

Dashlane-Security White Paper

v3.0.1

B Change History
v2.2.0 (2024-01-08)

+ fix: resize and rename Table 1

- fix: change page numbering in the table of contents
- feat: adding new collection activity logs

+ feat: add change history section

v2.3.0 (2024-02-02)

+ fix: remove some format misconfigurations

- feat: add info about entropy in tab.1

+ fix: remove specific antivirus mention in section 3.6
+ fix: simplify section 1.7

v2.4.0 (2024-03-18)

- feat: add paragraph about zxcvbn for Master Password
v2.5.0 (2024-05-29)

+ feat: add sections about confidential user & group provisioning
v2.6.0 (2024-06-10)

+ chore: remove Dashlane Authenticator mentions

v2.7.0 (2025-01-29)

+ feat: add sections about CRD and Nudges
+ fix: update figure 4 and figure 5 caption and labels

- chore: add Nudges activity logs to the appendix## 2.7.0 (2025-09-02)## 3.0.0 (2025-09-02)

v3.0.0 (2025-09-02)

« Add new Al and Antiphishing section
+ chore(revamp) -Migrate from LaTeX to Typst

B-Change History

45

	General Security Principles
	List of secrets
	Protection of User Data in Dashlane
	Local Access to User Data
	Local Data Usage After Decrypting
	Use of 2FA Applications to Increase User Data Safety
	Authentication
	Communication
	Details on Authentication Flow
	Adding a new device for Master Password based users
	Adding a new device for Passwordless users
	Proximity transfer with QR code scan
	Exchange via server with visual check

	Keeping the User Experience Simple
	Use of 2FA Application to Secure the Connection to a New Device
	2-Factor Authentication
	Sharing Data Between Users
	Account Recovery
	Admin-assisted Account Recovery
	Account Recovery Key

	Dark Web Monitoring for Master Password
	Activity Logs
	Credential Risk Detection
	Nudges
	Machine Learning for Autofill and Phishing Detection
	Privacy-First Data Collection
	Model Architecture
	Model Development Pipeline
	Model Specifications

	Feature Extraction
	Autofill Feature Extraction
	Phishing Detection Feature Extraction

	Single Sign-On (SSO)
	Introduction
	General Principle
	Single Sign-On with the Self-Hosted Connector
	Overview
	Services
	Keys, secrets, and certificates
	Workflow

	Single Sign-On with the Dashlane-Hosted Connector
	Overview
	Cryptographic materials
	Workflows
	Enclave initialization step
	Storage of the secure enclave
	Team creation
	User SSO login
	SCIM User provisioning
	Group provisioning

	Impact on Potential Attack Scenarios
	Minimal Security Architecture
	Most Common Security Architecture
	Dashlane Security Architecture
	Anti-Clickjacking Provisions
	Same-Origin Policy
	Memory Protection

	Activity Log - List of Events
	Default Activity Logs
	Additional Sensitive Activity Logs
	Diagrams

	Change History

