
Dashlane’s Security
Principles & Architecture

February 2, 2024

v2.3.0



Contents

Contents 2

Figures 4

1 General Security Principles 5

1.1 List of secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Protection of User Data in Dashlane . . . . . . . . . . . . . . . . . . 6

1.3 Local Access to User Data . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Local Data Usage After Decrypting . . . . . . . . . . . . . . . . . . . 7

1.5 Use of 2FA Applications to Increase User Data Safety . . . . . . . . . 7

1.6 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Details on Authentication Flow . . . . . . . . . . . . . . . . . . . . . 9

1.8.1 Adding a new device for Master Password based users . . . . 10

1.8.2 Adding a new device for Passwordless users . . . . . . . . . . 11

1.8.2.1 Proximity transfer with QR code scan . . . . . . . . 11

1.8.2.2 Exchange via server with visual check . . . . . . . . 11

1.9 Keeping the User Experience Simple . . . . . . . . . . . . . . . . . . 12

1.10 Use of 2FA Application to Secure the Connection to a New Device . . 13

1.11 2-Factor Authentication . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.12 Sharing Data Between Users . . . . . . . . . . . . . . . . . . . . . . . 13

1.13 Account Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.13.1 Admin-assisted Account Recovery . . . . . . . . . . . . . . . 15

1.13.2 Account Recovery Key . . . . . . . . . . . . . . . . . . . . . . 16

1.14 Dark Web Monitoring for Master Password . . . . . . . . . . . . . . . 16

1.15 Activity Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Single Sign-On (SSO) 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 General Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Single Sign-On with the Self-Hosted Connector . . . . . . . . . . . . 19

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Keys, secrets, and certificates . . . . . . . . . . . . . . . . . . 20

2.3.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Single Sign-On with the Dashlane-Hosted Connector . . . . . . . . . 22

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Cryptographic materials . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3.1 Enclave initialization step . . . . . . . . . . . . . . . 23



2.4.3.2 Storage of the secure enclave . . . . . . . . . . . . . 24

2.4.3.3 Team creation . . . . . . . . . . . . . . . . . . . . . 25

2.4.3.4 User SSO login . . . . . . . . . . . . . . . . . . . . . 26

3 Impact on Potential Attack Scenarios 28

3.1 Minimal Security Architecture . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Most Common Security Architecture . . . . . . . . . . . . . . . . . . 29

3.3 Dashlane Security Architecture . . . . . . . . . . . . . . . . . . . . . 30

3.4 Anti-Clickjacking Provisions . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Same-Origin Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Appendices 33

A Activity Log - List of Events 33

A.1 Default Activity Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.2 Additional Sensitive Activity Logs . . . . . . . . . . . . . . . . . . . . 34

B Change History 35



Figures

1 Authentication Flow During Registration . . . . . . . . . . . . . . . . 9

2 Authentication When Adding a New Device . . . . . . . . . . . . . . 10

3 Authentication When Adding a New Device - Passwordless flow . . . 11

4 Dark Web monitoring for Master Password flow . . . . . . . . . . . . 17

5 Self-Hosted SSO Workflow . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Dashlane-Hosted SSO Workflow . . . . . . . . . . . . . . . . . . . . 23

7 Dashlane Confidential SSO Initialization . . . . . . . . . . . . . . . . 24

8 Dashlane Confidential SSO Team Creation Flow . . . . . . . . . . . . 25

9 Dashlane Confidential SSO - User Login Flow . . . . . . . . . . . . . 27

10 Dashlane-Hosted SSO - User Login Flow Part 2 . . . . . . . . . . . . 28

11 Potential Attack Scenarios With Minimal Security . . . . . . . . . . . 29

12 Potential Attack Scenarios With Most Cloud Architecture . . . . . . . 30

13 Potential Attack Scenarios With Dashlane’s Security Architecture . . 31



Dashlane- Security White Paper v2.3.0

Dashlane Password Manager is designed using zero-knowledge architecture,

with the data encrypted locally on the user’s device. Only the user can access

the data by using a password or another form of authentication. Since Dashlane

doesn’t have access to the user’s vault and doesn’t store the user’s Master Pass-

word, malicious actors can’t steal the information, even if Dashlane’s servers are

compromised.

1 General Security Principles

Before storing each individual’s vault on its servers, Dashlane encrypts it using Ad-

vanced Encryption Standard (AES) 256-bit encryption. Access to the vault requires

either a User Master Password, which is only known to the account holder, or, for

a passwordless user, a machine-generated unique password. In both cases, this

password is not stored on Dashlane’s servers and is not accessible to Dashlane em-

ployees. Dashlane uses a separate User Device Key to authenticate each person

on its servers. When someone creates a new Dashlane account or enables an ad-

ditional device for data synchronization, Dashlane first verifies the authorized user

by sending a token through the registered email address or mobile phone number,

then auto-generates the User Device Key. For passwordless login, access to the ad-

ditional device is conditioned by authorization from an already registered device,

so it is not necessary to send the token through email or mobile.

When a person enters their Master Password into the Dashlane app, the data

is loaded into the memory of the authorized device. For additional security, indi-

viduals who log in with their Master Password can link their Dashlane accounts to

a 2-factor authentication (2FA) app such as Dashlane Authenticator or Google Au-

thenticator. Enabling the 2FA option means that both the Master Password and the

authenticator code are necessary for decrypting the vault. All communication be-

tween the Dashlane app on the local device and Dashlane’s servers takes place over

SSL/TLS cryptographic protocol. And while a variety of security processes occur in

the background during user registration and authentication, the user experience

is simple and streamlined. Dashlane Business account admins can enable an op-

tional account recovery feature through their Admin Console. This feature allows

employees to reset their Master Password and recover their data while preserving

Dashlane’s zero-knowledge architecture. When an employee initiates account re-

covery, the admin acts as the trusted third party to verify the user’s identity and

approve the request. In addition, an Account Recovery Key is an available mech-

anism for all Master Password based and passwordless users to recover access to

their account using a single-use key.

1.1 List of secrets

Dashlane uses many secrets to secure user’s data. Some of them are described as

follows:

1 General Security Principles Page 5



Dashlane- Security White Paper v2.3.0

Key Name Key Symbol Description

User Master Password UserMP

Password/Passphrase generated by the user to derive the key
to encrypt the user’s vault.
The User Master Password is expected to be as random as possible

Intermediate Key IntermediateKey Random 32-byte key, generated by local devices

User Device Key DeviceKey Random 32-byte key, generated by local devices

User Secondary Key UserSecondaryKey Random 32-byte key, generated server side for 2FA usage

Account Recovery Key AccountRecoveryKey
28-character unique string generated with password generator
(≃ 145 bits of entropy)

Machine-Generated
Master Password MachineGeneratedMP

40-character unique string generated with password generator
(≃ 243 bits of entropy)

Table 1: Dashlane Secrets Overview

1.2 Protection of User Data in Dashlane

Protection of user data in Dashlane relies on 3 separate secrets:

• The User Master Password:

▷ It is never stored on Dashlane servers, nor are any of its derivatives (in-

cluding hashes).

▷ By default, it is not stored locally on the disk on any of the user’s devices;

we simply use it to decrypt the local files containing the user data.

▷ It is stored locally upon user request when enabling the feature “Remem-

ber my Master Password”.

▷ In addition, we ensure that the user’s Master Password is never transmit-

ted over the internet [1] . [1] The only derivative of it that is sent over the inter-

net is the final encrypted vault. The following para-

graphs outline how we ensure its resilience to at-

tacks.• The IntermediateKey: in some cases (local storage), we use IntermediateKey

encrypted with a derivative of UserMP .

• The User Device Keys: unique key for each device enabled by a user:

▷ Auto-generated for each device.

▷ Used for authentication.

• The Machine-Generated Master Password (as an alternative to the User

Master Password):

▷ Is a strong, unique 40-character machine-generated string, generated

with password generator.

▷ It is never stored on Dashlane servers, nor are any of its derivatives (in-

cluding hashes).

▷ By default, it is not stored locally on the disk on any of the user’s devices;

we simply use it to decrypt the local files containing the user data.

▷ It is stored locally when logging into the Dashlane web extension.

▷ In addition, we ensure that theMachineGeneratedMP is never transmit-

1 General Security Principles Page 6



Dashlane- Security White Paper v2.3.0

ted over the internet. [2] [2] The only derivative of it that is sent over the inter-

net is the final encrypted vault. The following para-

graphs outline how we ensure its resilience to at-

tacks.

1.3 Local Access to User Data

Access to the user’s data requires using the UserMP , which is only known by the

user. It is used to generate the symmetric Advanced Encryption Standard (AES)

256-bit key for encryption and decryption of the user’s personal data on the user’s

device. In the case of passwordless, theMachineGeneratedMP is not visible for the

user, but transported securely between devices when the user adds a new device,

and then used exactly like the UserMP .

We use Web Crypto API for most browser-based cryptography and the native

libraries for iOS and Android. We use the Argon2 reference library compiled into

Web Assembly (Wasm) or linked to the mobile app.

1.4 Local Data Usage After Decrypting

Once the user has input theirUserMP locally inDashlane or validated theirMachineGeneratedMP

via PIN Code or biometrics and their user data has been decrypted, data is loaded

in memory.

TheDashlane client operateswithin significant constraints to use decrypted user

data effectively and securely:

• Dashlane processes access individual passwords to autofill them on websites

or to save credentialswithout having to ask the user forUserMP orMachineGeneratedMP

each time.

• The Argon2d (or PBKDF2) derivation used to compute the AES keys adds sig-

nificant latency (the purpose of this is to protect against brute force attacks).

See paragraph Memory Protection for more on memory management.

1.5 Useof2FAApplications to IncreaseUserDataSafety

At any time, a user can link their Dashlane account to a 2FA application on their

mobile device (we recommendusingDashlane Authenticator, or alternatives such as

Google Authenticator). All of their data (both the data stored locally and the data

sent to Dashlane servers for synchronization purposes) is then encryptedwith a new

key, which is generated by a combination of UserMP and a randomly generated

key UserSecondaryKey stored on the Dashlane server, as described in the following

steps:

• The user links their Dashlane account with their 2FA application.

• Dashlane servers generate and store UserSecondaryKey, which is sent to the

user’s client application.

• All personal data are encrypted with a new symmetric AES-256 bit key gen-

erated client-side from both UserMP and UserSecondaryKey.

1 General Security Principles Page 7



Dashlane- Security White Paper v2.3.0

• UserSecondaryKey is never stored locally.

• The next time the user tries to log into Dashlane, they will be asked by Dash-

lane servers to provide a One-Time Password generated by the 2FA applica-

tion. Upon receiving and verifying this One-Time Password, Dashlane servers

will send the UserSecondaryKey to the client application, allowing the user to

decrypt their data.

User data can be decrypted only by having both UserMP and the 2FA applica-

tion linked to the user’s account.

1.6 Authentication

As some of Dashlane’s services are cloud-based (data synchronization between

multiple devices, for instance), there is a need to authenticate the user on Dash-

lane servers.

Authentication of the user on Dashlane servers is based on DeviceKey and has

no relationship with the User Master Password orMachineGeneratedMP .

When a user creates an account or adds a new device to synchronize their data,

a new User Device Key is generated by the servers. DeviceKey is composed of 40

random bytes generated using the OpenSSL RAND_byte function. The 8 first bytes

are the access key, and 32 remaining bytes are the secret key.

DeviceKey is received by the user’s device and is stored locally in the user data,

encrypted as all other user data, as explained earlier. On the server side, the secret

key part is encrypted so that employees cannot impersonate a given user device.

Whenauser has gainedaccess to their data usingUserMP orMachineGeneratedMP ,

Dashlane is able to access DeviceKey to authenticate them on our servers without

any user interaction.

As a result, Dashlane does not have to store UserMP or MachineGeneratedMP

to perform authentication.

1.7 Communication

All communications between the Dashlane application and the Dashlane servers

are secured with HTTPS.

dashlane.com domain is HSTS preloaded to prevent any downgrade on any sub-

domain and we keep our TLS endpoints cipher suites up-to-date with the current

recommendations.

It’s important to note that we never rely on HTTPS alone and we build everything

to ensure that the confidentiality of the data is not affected even if the transport

protocol is compromised.

1 General Security Principles Page 8



Dashlane- Security White Paper v2.3.0

1.8 Details on Authentication Flow

The initial registration for a user follows the flow described in Figure 1.

User Device Key is
stored locally and
encrypted with a
key, derived from
the User Master
Password or
Machine-Generated
Master Password.

Client

Generates random
User Device Key. 

Storage of: 

User Device
Key (secret
key part is
encrypted)
Master e-mail
(Mobile
phone)

Authentication
based on User
Device Key.

Account created

User authenticated

Account creation request

Server
Registration

Authentication

User Device Key

HTTPS

HTTPS

HTTPS

HTTPS

Figure 1: Authentication Flow During Registration

As seen in Figure 1, UserMP is never used to perform server authentication, and

the only keys stored on our servers are the User Device Keys.

1 General Security Principles Page 9



Dashlane- Security White Paper v2.3.0

1.8.1 Adding a new device for Master Password based users

User Device Key is
stored locally and
encrypted with a
key derived from
the User Master
Password.

Client

Server generates: 

New one-time
password
New User
Device Key

Storage of: 

New User
Device Key
(secret key
part is
encrypted)

Send OTP by e-mail or SMS

User authenticated 

New device authentication

Users can decrypt
data with their
Master Password.

Server
Second Device

OTP 
HTTPS

HTTPS

HTTPS

Figure 2: Authentication When Adding a New Device

When a user adds an additional device, Dashlane needs to make sure that the user

adding said device is indeed the legitimate owner of the account. This is to gain

additional protection in the event UserMP has been compromised and an attacker

who does not have access to their already-enabled device is trying to access the

account from another device.

As shown in Figure 2, when a user is attempting to connect to a Dashlane ac-

count on a device that has not yet been authorized for that account, Dashlane

generates a One-Time Password (a token) that is sent to the user either to the email

address used to create the Dashlane account initially or by text message to the

user’s mobile phone if the user has chosen to provide their mobile phone number.

To enable the new device, the user has to enter both UserMP and the token.

Only once this two-factor authentication has been performed will Dashlane servers

start synchronizing the user data on the new device. All communication is handled

with HTTPS, and the user data only travels in AES-256 encrypted form. Please note

again that UserMP never transmits over the internet.

1 General Security Principles Page 10



Dashlane- Security White Paper v2.3.0

1.8.2 Adding a new device for Passwordless users

User Device Key is
stored locally and
encrypted with a
key derived from
the Machine
Generated Master
Password. 
Users can decrypt
data upon
successful key
exchange.

Client

Server generates: 

New User
Device Key

Storage of: 

New User
Device Key
(secret key
part is
encrypted)

User authenticated 

New device authentication

Server
Second Device

HTTPS

HTTPS

Authenticated Key

Exchange via QR

Code or Security

Challenge 

Figure 3: Authentication When Adding a New Device - Passwordless flow

When a passwordless user adds a new device, they can use an existing logged in

device to complete the setup process. Depending on the type of logged in device,

the user can either complete the new device setup with a QR code scan, or com-

plete a security challenge. The goal of the exchange is to securely transmit the

MachineGeneratedMP from an already trusted device to a new device.

This key exchange is based on Elliptic Curve Cryptography, using Curve25519.

1.8.2.1 Proximity transfer with QR code scan

If a passwordless user has a logged in mobile device, a QR code scan can be

used to add a new device. When a user enters their email address into the new

device (untrusted), a X25519 key pair is generated on the device and the public

key is displayed on the screen as a QR code. That QR code must be scanned by a

logged in device (trusted). Upon successful key exchange, the two devices generate

the same shared secret, derived into a cryptographic key, which will be used to

encrypt/decrypt theMachineGeneratedMP passed between the devices. The vault

can be then decrypted locally on the new device.

1.8.2.2 Exchange via server with visual check

If a passwordless user does not have a mobile logged in device or is unable to

use the camera functionality, then a security challenge can be performed. Without

1 General Security Principles Page 11



Dashlane- Security White Paper v2.3.0

the ability to use proximity to exchange the secret, the two devices need to use the

server to transport the public keys. Dashlane ensures an attacker cannot tamper

with the keys during the exchange by authenticating the key exchange with Short

Authenticated String:

• From the shared secret (output of the key exchange), we derive a key seen as

a source of entropy to choose five random words in a word list.

• The wordlist is https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt.

• If the key exchange was not tampered with, the two lists will match. We ask

the user to input one missing word (chosen at random) in the list of words, to

incentivize them to check that the two lists match. This confirmation happens

on the trusted (authenticated) device.

• We complement this security mechanism with a Public Key Commitment: the

untrusted device sends a hash of its X25519 public key at the beginning of

the exchange, and releases it to the untrusted device only upon receiving its

public key. This mechanism would force an active Man in The Middle eaves-

dropping the key exchange to provide a public key to the trusted device before

being able to know what Short Authenticated String it should match, deeply

decreasing the probability to successfully hijack the key exchange.

Upon successful completion of the challenge, theMachineGeneratedMP can be

transmitted to the new device, and the vault is decrypted locally on the user’s new

device.

1.9 Keeping the User Experience Simple

User chooses a login and a strong password

User authenticated

User enters login and password

User authenticated

1

2

1

2

Registration

Authentication

(a) Registration and Authentication Steps
- Master Password

User chooses a login and a PIN code +
optional biometrics

User authenticated

User enters PIN or biometrics

User authenticated

1

2

1

2

Account Creation

Authentication

(b) Registration and Authentication Steps
- Passwordless

All along, our goal has been to keep the user experience simple and to hide all

the complexity from the user. Security is growing more and more important for

users of cloud services, but they are not necessarily ready to sacrifice convenience

for more security.

Even though what goes on in the background during the initial registration steps

is complex (see 4a), the user experience is very simple. All they have to do is choose

1 General Security Principles Page 12

https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt


Dashlane- Security White Paper v2.3.0

User enters the one-time password

1

2

Registration

User authenticated3

User enters login and password

 1-Time Pwd 

(a) Second Device Registration Steps -
Master Password

User completes device registration using a
logged-in device

1

2

Registration - Passwordless

User authenticated3

User enters login

(b) Second Device Registration Steps -
Passwordless

between creating a (strong) UserMP or going passwordless, and all the other keys

are generated by the application without user intervention.

When adding an additional device, the process is equally simplewhile remaining

highly secure through the use of two-factor authentication described in 4a or using

an existing logged in device.

1.10 Use of 2FAApplication to Secure theConnection

to a New Device

At any time, a user can link their Dashlane account to a 2FA application on their

mobile device. When they attempt to connect to a new device, instead of sending

them a one-time password by email, Dashlane asks the user to provide a one-time

password generated by the 2FA application.

After receiving and verifying the one-time password provided by the user, Dash-

lane servers will store the DeviceKey generated by the client application, as de-

scribed in 4b.

1.11 2-Factor Authentication

Dashlane offers 2-factor authentication that can be activated from the security

settings in the web extension or mobile app to force the usage of a second factor

each time the user logs into Dashlane.

Supported two-factor methods include 2FA applications such as Google Au-

thenticator or U2F-compatible devices such as Yubikeys. U2F is an open protocol

from the FIDO Alliance (https://fidoalliance.org). Dashlane is a board-level member

of the FIDO Alliance.

1.12 Sharing Data Between Users

Dashlane allows users to share credentials and Secure Notes with other users, or

with groups of users, in such a way that Dashlane never directly accesses a user’s

data at any point. In fact, Dashlane’s servers never have access to the content of

shared data.

1 General Security Principles Page 13

https://fidoalliance.org


Dashlane- Security White Paper v2.3.0

Dashlane’s sharing relies on asymmetric encryption; upon account creation, a

unique pair of public and private RSA keys are created by the Dashlane application

for each user. The private key is stored in the user’s personal data, and the public

key is sent to Dashlane’s servers. RSA public and private keys are generated using

the OpenSSL function RSA_generate_key_ex, using a key length of 2048 bits, with

3 as a public exponent.

Here is the process for a user, Alice, to share a credential with another user, Bob:

• Alice asks Dashlane’s servers for Bob’s public key.

• Alice generates a 256-bit AES key using a cryptographically secure random

function. This key is unique for each shared item and is called an ObjectKey.

• Alice encrypts the ObjectKey using Bob’s public key, creating a BobEncrypte-

dObjectKey.

• Alice sends the BobEncryptedObjectKey to Dashlane’s servers.

• Alice encrypts her credential with the ObjectKey, using AES-CBC and HMAC-

SHA2 to create an EncryptedCredential.

• Alice sends the EncryptedCredential to Dashlane’s servers.

• When Bob logs in, Dashlane’s servers inform him that Alice wants to share

a credential with him. Bob must manually accept the item in his Dashlane

application and sign his acceptance using his private key.

• Upon acceptance, Dashlane’s servers send Bob the BobEncryptedObjectKey

and the EncryptedCredential.

• Bob decrypts the BobEncryptedObjectKey with his private key and gets the

ObjectKey.

• Bob decrypts the EncryptedCredential with the ObjectKey and adds Alice’s

plain text credential to his own personal data.

Sharing data with a group of users follows the same security principle: Use a

user’s RSA public and private keys to send protected AES keys, sign a user’s action,

and use intermediary AES keys to exchange data.

To summarize:

• Each user has a pair of public and private RSA 2048-bit keys:

▷ Public keys are used to encrypt information only a specific user can de-

crypt.

▷ Private keys are used to sign actions users are performing.

• For each credential or secure note shared, an intermediary AES 256-bit key is

created and used to perform data encryption and decryption.

1 General Security Principles Page 14



Dashlane- Security White Paper v2.3.0

1.13 Account Recovery

Dashlane has two recovery methods available for users: Admin-Assisted Account

Recovery for business users who login with a Master Password, and Account Re-

covery Key, available for all consumer users.

1.13.1 Admin-assisted Account Recovery

Admin-Assisted Account recovery allows Dashlane Business users to regain access

toDashlane by resettingUserMP . Our patentedprocess preserves zero-knowledge.

Through account recovery, master passwords are never stored on any servers nor

transmitted in any form.

Our solution allows users to reset UserMP and recover the data stored on an

authorized device. Account recovery is an optional feature admins can activate for

their Dashlane Business account in the Admin Console.

To enable recovery, the user’s local key —itself encrypted with UserMP —is also

encrypted using a unique user recovery key, which is generated and used for all

of the user’s devices when they opt into account recovery. This user recovery key

is then encrypted using a unique server-side recovery key, which is only known to

Dashlane and the user’s client devices. When an admin enables account recovery,

their public key is used to encrypt the server-side recovery key, which as aforemen-

tioned, was already used to encrypt the user’s recovery key. An admin can then, via

their private key, later access the user’s recovery key protected by the server-side

recovery key.

When a user requests account recovery, they are asked to verify their account

and create a new UserMP . A critical step of the recovery process is the verification

of the identity of the user. It is up to the admin, acting as a trusted third party, to

ensure the user requesting recovery is indeed the owner of the account. If an admin

approves the request, the server-side recovery key, which protects the user’s recov-

ery key, is securely exchanged from the admin to the user through a public/private

key system. On the user’s device, the user’s recovery key is then decrypted using

the server-side recovery key, provided by Dashlane after the user’s identity and

request have been validated. The user’s recovery key is then used to decrypt the

user’s local key, which in turn is used to decrypt the user’s data. The recovered data

is then re-encrypted with UserMP and re-synced to the Dashlane servers.

As this process involves amaster password change, all of the user’s devices have

to be registered once again to Dashlane for the user to access their newly encrypted

data.

Important privacy note: the account recovery process relies on the admin being

a trusted third party. In case the Dashlane admin has access to both the user’s

device and the user’s email used as a Dashlane account, the admin would be in a

position to trigger an account recovery from the user’s device and get access to the

user’s vault and personal data.

1 General Security Principles Page 15



Dashlane- Security White Paper v2.3.0

1.13.2 Account Recovery Key

Account Recovery Key allows users to set up a single-use recovery mechanism in

order to recover their data if they cannot access it anymore. The recovery key is

a 28-character alphanumeric string that must be saved and confirmed by the user

during setup. It is generated from the user personal settings using password gen-

erator, and a key derived from it with user crypto settings is used to encrypt the

UserMP (AES-256 encryption). Once encrypted, it is sent and stored on the server.

The Account Recovery Key mechanism can be disabled at any time from the

user’s security settings, invalidating the current account recovery key for the user.

In the event a user has forgotten their Master Password or lost access to all of

their devices, the user can initiate the recovery mechanism. First, the user must

complete an additional identity verification step, being either an email verification

code or a 2FA token, depending on the user’s security settings. Once identity veri-

fication is succesfully performed, the user inputs the recovery code, and the server

will release the encrypted UserMP to the client, which will attempt to decrypt it

with the Account Recovery Key. If successful, the user will be prompted to change

their UserMP .

Upon successfully completing the process, the current account recovery key is

no longer valid. A new account recovery key must be configured from the user’s se-

curity settings. The recovery key will also be disabled after those 2 events: change

of master password, and master password to SSO Migration.

1.14 Dark Web Monitoring for Master Password

This feature allows Dashlane users to be alerted if their master password or an em-

ployee’s master password has been identified in a data breach. To check if the

master password of a user is compromised, we are going to check if it is present in

the databases resulting from the various data leaks that we collect from third par-

ties. We collect the data through API requests, and transform all data into hashes

using the Argon2 function before storing them on our servers. When a user enters

his master password on his mobile or Web application, we start by transforming it

using the Argon2 function and a salt [3] present in the client application, giving us [3] The salt we use is specific for this feature and dif-

ferent from the one used to build the user’s encryp-

tion keya 32 bytes long hash.

Algorithm Iterations Mem. usage Parallelism Threads Hash length

Argon 2d v1.3 3 32768 2 2 32

Table 2: Argon2 configuration

To respect our zero-knowledgearchitecture, we use aprocess called “K-anonymity”

to guarantee that no one, not even Dashlane can access the master password. For

this, the complete hash never leaves the user’s device, but we only send the first

three bytes of it to our servers and compare those bytes to the entries we have in

our database. If we have one or more matches, we send the list to the users and

finally, the application is able to make a complete comparison between the local

hash and the one(s) coming from Dashlane’s servers, and at the end, warn the user

1 General Security Principles Page 16



Dashlane- Security White Paper v2.3.0

if his master password has been found in a data leak.

Master Password is
hashed using the
Argond2d function

Client

User types his
Master Password 

Queries the
database to identify
hashes that begin
with the three bytes
sent by the client

Server
Monitoring �ow 

Compare the
password with the
ones in the list. If
there is a match,
an alert is sent to
the user.

Send the first three bytes 

   Returns the list of matching hashes 

Figure 4: Dark Web monitoring for Master Password flow

1.15 Activity Logs

Dashlane provides business customers with Activity Logs, a timestamped report

available in the Admin Console that lists actions taken by admins and team mem-

bers in Dashlane. This feature is important for Admins to gain insight on the security

posture of your organization.

To produce this report, Dashlane generates two types of events:

• Activity Logs: General events of members’ activity. These are generated by

default on the server-side.

• Sensitive Activity Logs: Additional events generated by client applications and

sent to an endpoint to be collected on the server-side. Those logs aren’t en-

abled by default and require Admins’ actions to be enabled.

Activity Logs are generated from various actions performed by team members

and admins, with the complete list of available events provided in Appendix A.

Activity Logs and Sensitive Activity Logs are first stored in a database for queu-

ing purposes. Then a batch cleans the queue and forwards events to an Object

Storage for persistence. The Object Storage is replicated on two different geo-

graphical zones (Ireland and Germany) to achieve reliable storage of Activity Logs.

Activity Logs can be recovered by Admins. This can be done in a two-steps pro-

cess:

1 A query is sent to the server; the server replies with a query identifier.

2 Server can be requested with the query identifier to get the state of the query

1 General Security Principles Page 17



Dashlane- Security White Paper v2.3.0

and eventually get the result when the query has been finalized.

2 Single Sign-On (SSO)

Dashlane integrates with SSO Identity Providers (IdPs) that use the SAML 2.0 open

standard authentication protocol, such as Okta, Azure AD, and ADFS. This integra-

tion allows employees to unlock their Dashlane vaults with their SSO credentials

rather than their Master Password. To maintain Dashlane’s zero-knowledge archi-

tecture, the SSO integration requires an SSO connector to store the user data en-

cryption keys and deliver them upon user authentication. You can either self-host

the SSO connector inside your own infrastructure or opt to have it hosted by Dash-

lane in a secure enclave.

If you choose the self-hosted option, the SSO connector acts as the service

provider in the SAML workflow. Dashlane distributes the service, and you host and

manage it as a server component, either on-premises or in the cloud. To preserve

the zero-knowledge principle, the SSO connector stores the first part of the data

encryption key (64 random bytes), and Dashlane’s cloud servers store the other

half (another 64 random bytes). Upon successful authentication and retrieval of

both key parts by the Dashlane app, they are compared using the Boolean logic

operation XOR, generating another 64-byte key that decrypts or encrypts the user

data. If Dashlane hosts andmanages the SSO connector, the zero-knowledge prin-

ciple is enabled by the secure enclave—an environment that isolates the data and

processes of the computing unit from the operating system and other processes

on the host machine. The secure enclave encrypts the storage data and has an

attestation mechanism to ensure that only authorized code can process the data.

Dashlane cannot access the user encryption keys or any other data the SSO con-

nector processes.

2.1 Introduction

Dashlane Business supports login with single sign-on (SSO), using any SAML 2.0

enabled IdP.

In a single-sign-on setup, the user doesn’t have to input UserMP . Instead, a

random key is generated at account creation. This key (the data encryption key) is

delivered to the Dashlane app after the user successfully logs in to the IdP, and it is

used as a symmetric encryption key to encrypt and decrypt the user data.

This section details how the key is stored and delivered to the user in order to

make sure that the zero-knowledge principle is maintained.

2.2 General Principle

The integration of SSO with the Dashlane app requires an entity storing users’ en-

cryption keys and delivering them upon authentication. This entity has the knowl-

edge of every user’s key, so it’s highly sensitive. Moreover, Dashlane can’t host such

2 Single Sign-On (SSO) Page 18



Dashlane- Security White Paper v2.3.0

an entitywithoutmore concerns because this would break our zero-knowledge prin-

ciple by providing us access to the encryption keys of our users.

The previous entity in charge of users’ encryption keys is called the Encryption

Service and it could be hosted two different ways to follow our zero-knowledge rule:

• Self-hosted: the Encryption Service is a server deployed inside the infras-

tructure of Dashlane Business customer.

• Hosted in a secure enclave byDashlane: the Encryption Service is a service

running in Dashlane infrastructure, in a secure enclave to respect our zero-

knowledge principle.

2.3 Single Sign-On with the Self-Hosted Connector

2.3.1 Overview

To avoid storing all the keys in one place, the data encryption key is composed of

2 parts:

• 64 random bytes held by the Encryption Service.

• 64 random bytes held by Dashlane’s servers in the cloud.

The Encryption Service is a server component that the customer operates (either

in the cloud or on premises). It acts as the service provider in the SAML 2.0 flow.

After a successful authentication to the Encryption Service using SAML, the first

part of the key is delivered to the Dashlane client application along with a token

that allows it to get the second part from the Dashlane server.

Once both parts of the keys are retrieved by the client app, they are XORed

together, and the resulting 64 bytes are used as a symmetric key to encrypt and

decrypt user data.

This systemensures zero-knowledge as the first part of the key and is only known

by the Encryption Service and the client app, both of which are managed by the

customer.

It also makes sure that a compromised Encryption Service cannot be used to

fetch the keys of users without leaving traces on Dashlane servers (an API call to

the Dashlane server is required to fetch the second part of the key).

2.3.2 Services

Dashlane Server/API (API) The servers operated by Dashlane in the cloud, where

user data is stored encrypted.

Encryption Service (SP) A service acting as the service provider in the SAML 2.0

flow. The service is distributed by Dashlane, but it’s hosted and managed by the

customer on premises or in the cloud.

2 Single Sign-On (SSO) Page 19



Dashlane- Security White Paper v2.3.0

Identity Provider (IdP) The SAML 2.0 identity provider (e.g. ADFS, Azure AD, Okta)

of the customer. This service is not provided by Dashlane. It is operated by the

customer or by a third party.

2.3.3 Keys, secrets, and certificates

IdP key and certificate (IdPKey / IdPCert) Public and private keys of the IdP. The

private key is held by the IdP, while the certificate needs to be provided to the SP in

the configuration file. It is used by the IdP to sign and by the SP to verify the SAML

assertions.

Master SP Key / Encryption Service Key (Master_SPKey) A 64 bytes secret key,

generated randomly by the Team Admin Console (client side). It is stored in the

configuration file of the SP, and is only known by the Team Admin. It is used by the

SP to encrypt/decrypt the User_SPkey before storing them in the API.

User SP Key (User_SPKey) A 64 bytes secret key, generated randomly by the SP.

It is stored and encrypted in the API.

User Server Key (ServerKey) A 64 bytes secret key, generated randomly by the

client. It is stored unencrypted in the API.

User vault key (V aultKey) User_SPKey ⊕ ServerKey. It is used by the client to

encrypt/decrypt users’ data before storing them in the API.

2 Single Sign-On (SSO) Page 20



Dashlane- Security White Paper v2.3.0

2.3.4 Workflow

Dashlane ServersIdPEncryption ServiceUser Device

Dashlane ServersIdPEncryption ServiceUser Device

Client app has 0

/ 2 keys

Check the SAML

Assertion is valid

Generate a

random

user_sp_key and

encrypt it with

master_sp_key

Store encrypted

user_sp_key if

none exist for this

user

Else: Fetch the

existing

encrypted

user_sp_key

Generate random

sso_token

Decrypt

user_sp_key using

master_sp_key

Client app has 1

/ 2 keys

Check sso_token

Client app has 2

/ 2 keys

Compute

vault_key=XOR(u-

ser_sp_key,

server_key)

Request SSO Authentication

Trigger SAML Flow

Login with SSO

Return Signed SAML Assertion

Submit Signed SAML

Assertion

Send encrypted user_sp_key

Return existing or newly registered encrypted

user_sp_key + sso_token

Return user_sp_key +

sso_token

Request server_key (authenticating with sso_token)

Return server_key

Figure 5: Self-Hosted SSO Workflow

2 Single Sign-On (SSO) Page 21



Dashlane- Security White Paper v2.3.0

2.4 Single Sign-On with the Dashlane-Hosted Con-

nector

2.4.1 Overview

In the Dashlane-hosted connector setup, the Encryption Service service is hosted

and managed by Dashlane. To prevent Dashlane from accessing users’ encryption

key, breaking the zero-knowledge principle, the Encryption Service runs in a so-

called secure enclave.

A secure enclave is a term coming from the field of trusting computing. This is

the name given to an isolated computing unit or a Trusted Execution Environment

(TEE). This technology provides a way to process data inside an environment that

is not readable by any other process of the hosting machine besides the process

running inside the enclave. Moreover, secure enclaves can generate attestation

with the fingerprint of the code they run. This way, clients communicating with an

enclave can get assurances of the code they are communicating with and decide

if they trust this code to process their data.

Secure enclaves are just computing units with CPU and volatile memory re-

sources. They are not provided with persistent storage. To circumvent this problem,

a Key Management Service (KMS), which can authenticate that requests are com-

ing from trusted enclaves, is required to encrypt the storage of secure enclaves.

Dashlane leverages secure enclave technology to run a Encryption Service ser-

vice without being able to access users’ encryption keys processed by the Encryp-

tion Service.

2.4.2 Cryptographic materials

Dashlane confidential SSO workflows require a lot of cryptographic keys and cer-

tificates defined in the table 3. All keys defined is 32 bytes long.

Key Name Key Symbol Description

Enclave Master Key EMKey
Key generated and stored within the KMS in order
to encrypt/decrypt ELKey

Enclave Local Key ELKey
Key generated within the KMS at the first enclave
bootstrap and sent to this enclave in order to derive EEKey

Enclave Unseal Key EUKey

Key generated by the deployment process at
the first bootstrap and sent to the enclave,
in order to derive EEKey

Enclave Encryption Key EEKey
Key derived from ELKey ⊕ EEKey in order to encrypt
SPMasterKey

Service Provider Master Key SPMasterKey
Key generated within the enclave on a new team
registration in order to encrypt/decrypt UserSPKey

User Service Provider Key UserSPKey

Key generated within the enclave when the user is
provisioned for SSO authentication,
in order to encryptRemoteKey

SSO Server Key SSOServerKey
Generated by the server at account creation,
in order to encryptRemoteKey

Remote Key RemoteKey
Generated by the client at account creation,
in order to encrypt user’s vault

Identity Provider Certificate IdPCert
Certificate of public key of the IdP to verify
SAML assertion

Table 3: Cryptographic keys and certificates implied in Dashlane-hosted workflows

2 Single Sign-On (SSO) Page 22



Dashlane- Security White Paper v2.3.0

Dashlane

DNS challenge 

Send enclave local key 

Secure Enclave
System initialization 

Team creation

Encrypted with an enclave public key

HTTPS

HTTPS

KMS 

Datastore 

Generate and encrypt key 
for enclave at init 
Decrypt key for enclave on 
reboot
Verify enclave running code 
with enclave attestation 

Deployment process 
Share enclave unseal key 

Secure channel 

Store encrypted data from 
from the enclave 

Provide cryptographic 
attestation to prove its runtime 
environment
At bootstrap, recover the  
Enclave Encryption Key from 
Enclave Local Key and 
Unseal Key (xor)
Encrypt data before requesting 
for storage into the datastore 

Team admin 

Data encrypted by/for the enclave 

Admins 

IdP 

Request team creation 
Secure channel 

HTTPS

Send IdP certi�cate 
Secure channel 

Verify domain owner with  
DNS challenge
Generate Service Provider 
Master Key for the team
Signed IdP certificate + 
domain before storage 

Team user 
IdP 

User authentication 

Send SAML assertion signed by IdP 
Secure channel 

Send User Service Provider Key 
Secure channel

Verify SAML assertion with 
IdP certificate to authenticate 
users
At first user login, generate 
UserSPkey, and encrypt it 
with SPMasterkey
Store encrypted UserSPkey 
within the datastore
At further login, recover 
encrypted UserSPkey from 
storage, decrypt with 
SPMasterkey 

Figure 6: Dashlane-Hosted SSO Workflow

2.4.3 Workflows

2.4.3.1 Enclave initialization step

The first step is to generate an EnclaveMaster Key in the KMSand to build access

policies to that Enclave Master Key so access is granted only to the enclave. This is

done by basing policies on information provided by the attestation of the enclave:

when the KMS get a request for the Enclave Master Key, it matches the attestation

provided with the policies to grant or deny the request.

Then, the enclave is deployed and requests the KMS to generate an Enclave

Local Key and to securely send back to the enclave two versions of the Enclave

Local Key: one encrypted by the Enclave Master Key and one encrypted with an

ephemeral public key provided by the attestation. The enclave requests the storage

of the encrypted Enclave Local Key and keeps the plaintext Enclave Local Key in this

2 Single Sign-On (SSO) Page 23



Dashlane- Security White Paper v2.3.0

volatile memory. This way, if the enclave reboots or a new instance is deployed,

the instance will then request from the storage the encrypted Enclave Local Key

then the KMS will decrypt it with the Enclave Master Key. This way, the enclave is

provided with the Enclave Local Key to encrypt data, and the Enclave Local Key is

never in plaintext outside a secured environment; the enclave or the KMS.

Figure 7 describes the workflow to provide secure enclaves with ELKey.

Enclave

4. Return ELkey + EMkey(ELkey)

6. Store EMkey(ELkey)

KMS

1. Generate Enclave
Master Key (EMkey) 

3.a Generate ELkey 
3.b Encrypt ELkey with EMkey 

11. Decrypt ELkey with EMkey

StorageParent server

5. Request  EMkey(ELkey) storage

2. Request for Enclave Local 
Key (ELkey) generation 

Enclave

7. Request EMkey(ELkey) from storage

8. Recover EMkey(ELkey) from storage

9. Forward EMkey(ELkey)

10. Request to decrypt  EMkey(ELkey)

12. Return ELkey

Deployment
process

13. Send EUkey
14. Calculate EEkey=ELkey xor EUkey

Encrypted with enclave ephemeral public key

Encrypted within a secure channel

Figure 7: Dashlane Confidential SSO Initialization

Then, the deployment process can mount a secure channel (based on the attes-

tation of the enclave) to send EUKey to the enclave. This way, the secure enclave

can derivate the Enclave Encryption Key as follows:

EEKey = ELKey ⊕ EUKey

2.4.3.2 Storage of the secure enclave

A secure enclave is a runtime environment with no persistent storage. Data

needs to be encrypted before being passed through the parent server toward the

datastore.

2 Single Sign-On (SSO) Page 24



Dashlane- Security White Paper v2.3.0

Data within the secure enclave requiring persistent storage are the following:

• the Enclave Local Key ELKey, encrypted by the Enclave Master Key EMKey.

• Service Provider Master Keys SPMasterKey of each team, encrypted by the

Enclave Encryption Key EEKey.

• User Service Provider KeysUserSPKey of each user, encryptedby theSPMasterKey

of their team.

2.4.3.3 Team creation

The team creation step is the configuration of the SSO for an organization: the

enclave is provided with the IdP certificate to verify SAML assertions for authenti-

cating users of a domain (e.g users with an email from a given domain). The en-

clave still needs to verify that the admin performing the operation is the owner of

the claimed domain: this is to prevent anyone from providing a rogue IdP certifi-

cate for a domain they don’t own. Indeed, SSO is based on the domain of the

email of the user. For example, if a user requests to log in with the username

user@example.com, and the domain example.com is linked to an IdP, the user will

go through the authentication flow with that IdP. This way, registering an IdP for a

domain is a sensitive operation, requiring the secure enclave to perform the domain

verification.

The team creation flow is described in Figure 8

Enclave

6.Sign the IdP certificate + domain 
    + metadata with Kelk 
7. Generate SPMasterkey then  
     encrypt with Kelk: Kelk(SPMasterkey) 
8. Generate admin token then
     encrypt with Kelk: Kelk(Tadmin) 

StorageParent server

Encrypted within a secure channel

IdP

1. Retrieve the IdP certificate

3. Send IdP certificate + domain 

4. Return DNS challenge

Admin App

2. Handshake to build the secure channel

Isolated environment of an enclave

5. Admin configures the DNS challenge - Enclave validates the domain with the challenge

9. Request storage for signed IdP 
certificate + domain and Kelk(SPMasterkey)  

and Kelk(Tadmin)

10. Store signed IdP certificate + domain + Kelk(SPMasterkey) + Kelk(Tadmin)

11. Send back Tadmin

World Wide Web Dashlane

Figure 8: Dashlane Confidential SSO Team Creation Flow

1 IT admin of the organization configures the IdP and gets the URL for the IdP

2 Single Sign-On (SSO) Page 25



Dashlane- Security White Paper v2.3.0

endpoint and the IdP certificate of the key, which will sign further users’ proof

of authentication; IT admin starts the configuration flow of the SSO in the

Admin application.

2 The Admin application performs a handshake with the enclave to build a se-

cure channel.

3 Through the secure channel, the client application sends the IdP certificate

and domain; this is done in the secure channel to protect the IdP certificate’s

integrity (to prevent the certificate from being replaced in transit by a rogue

certificate).

4 The enclave sends back a random value to initiate the verification of the do-

main.

5 IT Admin and enclave perform the DNS challenge: the goal is to let the enclave

confirm that it is speaking with an owner of the claimed domain; for that, the

IT Admin has to place the random value at the root of the domain and then

the enclave can check this value with the DNS (better with a secured version

of the protocol); this way, the enclave validates that the IT admin is the owner

of the claimed domain.

6 The enclave generates a Message Authentication Code (MAC) for the IdP cer-

tificate + domain + metadata from EEKey.

7 The enclave generates the Service ProviderMaster Key for the domainSPMasterKey,

then encrypts it with EEKey.

8 The enclave generates a token to authenticate admins of the domain (the to-

ken will be shared between admin accounts of the domain), then encrypts it

with EEKey.

9 The enclave requests the parent instance to store the signed IdP certificate +

domain, the encrypted SPMasterKey, and the encrypted token admin.

10 The parent instance stores the signed IdP certificate + domain, the encrypted

SPMasterKey, and the encrypted token admin.

11 The instance sends back the token admin through the secure channel.

2.4.3.4 User SSO login

After the team creation, a user can expect to open their vault with the SSO

flow. Reaching the login page of their client application which redirects them to

the login page of their IdP. After the IdP authenticates the user, it redirects the user

to the client application with a SAML assertion proving their identity. Then, the

client application can send the assertion to the Encryption Service to receive back

UserSPKey, decrypting the user’s vault.

Until the proof of authentication is sent, the flow is the same for users who per-

form their first login and users who have already enabled their account.

2 Single Sign-On (SSO) Page 26



Dashlane- Security White Paper v2.3.0

The beginning of the flow is described by Figure 9

Enclave

10. Verify signature of signed IdP 
       certificate + domain with Kelk
11. Verify proof of authentication
12. Decrypt SPMasterkey with Kelk 

StorageParent server

8. Recover from storage signed IdP certificate + domain and encrypted SPMasterkey

Encrypted within a secure channel

IdP

1. Request secret key

Client App

3. Authenticate to IdP

Isolated environment of an enclave

9. Forward stored elements to enclave

World Wide Web Dashlane

2. Authentication required; Redirect to IdP

4. Return proof of authentication

6. Send proof of authentication

5. handshake to build secured channel

7. Forward proof of authentication

Figure 9: Dashlane Confidential SSO - User Login Flow

From this point, the user is authenticated in the enclave. The flow diverges be-

tween the first connection account and already enabled account.

After users are authenticated (the signature of their proof of authentication is

verified) for first connection, the workflow is as described in figure 10a:

13 The enclave generates the UserSPKey.

14 The enclave encrypts UserSPKey with SPMasterKey.

15 The enclave requests the parent server store SPMasterKey(UserSPKey).

16 After confirmation thatSPMasterKey(UserSPKey) is stored, the enclave sends

back to the client application the UserSPKey, encrypted in the secure chan-

nel.

After users are authenticated (the signature of their proof of authentication is

verified), for an account already enabled, the workflow is as described in figure 10b:

13 The parent server retrieves SPMasterKey(UserSPKey) from the storage.

14 The parent server forwards stored elements to the enclave.

15 The enclave decrypts the SPMasterKey(UserSPKey).

16 The enclave sends back to the client application the UserSPKey, encrypted

in the secure channel.

2 Single Sign-On (SSO) Page 27



Dashlane- Security White Paper v2.3.0

Enclave

16. Store encrypted UserSPkey

StorageParent server

15. Request storage

Encrypted within a secure channel

IdPClient App

Isolated environment of an enclave

World Wide Web Dashlane

17. Send the UserSPkey

13. Generate UserSPkey
14. Encrypt UserSPkey with  
       SPMasterkey 

(a) First login

Enclave

13. Retrieve encrypted UserSPkey

15. Decrypt UserSPkey with
       SPMasterkey 

StorageParent server

Encrypted within a secure channel

IdPClient App

Isolated environment of an enclave

World Wide Web Dashlane

16. Send the UserSPkey

14. Forward encrypted UserSPkey

(b) Standard login

Figure 10: Dashlane-Hosted SSO - User Login Flow Part 2

3 Impact on Potential Attack Scenarios

Dashlane has embedded a variety of security protocols into the architecture to pre-

vent user data compromise due to an attack from external or internal malicious ac-

tors. Some examples of these protocols include:

• Separation of the key for encrypting the user data and the key for authenti-

cating the user on the Dashlane server, which ensures user data encryption

keys are not stored anywhere and cannot be accessed by Dashlane employ-

ees or by attackers if the Dashlane servers are compromised.

• Web protection measures including anti-clickjacking provisions, which pre-

vent roguewebsites from triggering amalicious click and extracting data from

the Dashlane app; and same-origin policy, which only autofills a saved pass-

word on exact URL subdomains.

• Using the Argon2 function, which protects the encrypted user data against

brute-force or dictionary attacks.

3 Impact on Potential Attack Scenarios Page 28



Dashlane- Security White Paper v2.3.0

3.1 Minimal Security Architecture

Cloud services can use a single private secret, usually under their control, to

encrypt all user data. This is obviously a simpler choice from an implementa-

tion standpoint, plus it offers the advantage of facilitating deduplication of data,

which can provide important economic benefits when the user data volume is high.

Obviously, this is not an optimal scenario from a security standpoint since if the

key is compromised (hacker attack or rogue employee), all user data is exposed.

Rogue employee / External hackers

Access to user dataAccess to user data

AES user data �les stolen

Company secret key theftLarge-scale brute force attack

Figure 11: Potential Attack Scenarios With Minimal Security

3.2 Most Common Security Architecture

A better alternative is to use a different key for each user. The most common prac-

tice is to ask the user to provide a (strong) UserMP and to derive the encryption key

for each user from their UserMP . However, to keep things simple for the user, many

services or applications tend to also use the as an authentication key for the con-

nection to their services. This implies that an attacker could access a user’s vault

by just knowing the Master Password. It could also easily lead to implementation

errors (missing salt/rainbow tables attacks, wrong/weak hashing, etc.).

3 Impact on Potential Attack Scenarios Page 29



Dashlane- Security White Paper v2.3.0

Rogue employee / External hackers

Access to user data

Master Passwords 
hash massive theft 

AES user data 
files stolen 

User MP

Large-scale brute force attack
impossible (each vault needs

to be attacked separately) 

Figure 12: Potential Attack Scenarios With Most Cloud Architecture

3.3 Dashlane Security Architecture

Tomake this attack scenario impossible, we havemade the decision to separate the

key used for user data encryption and the key used for server-based authentica-

tion (see Figure 13). The user data is encrypted with a key, which is a derivative of

UserMP or MachineGeneratedMP . A separate DeviceKey (unique to each device-

user couple) is used to perform authentication on Dashlane servers. DeviceKey is

automatically generated by Dashlane. As a result:

• Encryption keys for user data are not stored anywhere.

• No Dashlane employee can ever access user data.

• User data is protected by UserMP or MachineGeneratedMP even if Dash-

lane’s servers are compromised.

3 Impact on Potential Attack Scenarios Page 30



Dashlane- Security White Paper v2.3.0

Rogue employee / External hackers

User Device 
Keys hash stolen 

AES user data 
�les stolen 

User Device 

Large-scale brute force attack
impossible (each vault needs to

be attacked separately) 

Large-scale brute force attack
impossible (each vault needs to

be attacked separately) 

AES user data 
�les stolen 

Figure 13: Potential Attack Scenarios With Dashlane’s Security Architecture

Even if this scenario happens, a rogue employee or an external hacker would

have a very hard time executing a brute force or dictionary attack on the AES user

data files, as we use the Argon2d (or PBKDF2-SHA2) algorithm. As the user’s data is

encrypted using a salted key, which is a derivative ofUserMP orMachineGeneratedMP ,

no precomputed attacks should be possible.

3.4 Anti-Clickjacking Provisions

To protect Dashlane users from rogue websites that would attempt to use clickjack-

ing tactics or other JavaScript-based attacks to extract data from the Dashlane

application, we have made sure none of the webpage-based interactions involving

user data unrelated to this website use JavaScript.

The popups used to trigger form-filling on a webpage use various browser se-

curity APIs to prevent control from the JavaScript of the visited page. As a result, a

rogue website cannot trigger a click that would cause Dashlane to believe that the

user has actually clicked, and therefore, cannot extract information unless the user

explicitly clicks in the field.

3.5 Same-Origin Policy

Dashlane automatically logs users into websites. To avoid providing users’ infor-

mation to rogue websites, the same-origin policy is always respected.

First, a credential saved by Dashlane when it has been used on a website with

the URL ofmysubdomain.mydomain.comwill not be automatically filled on another

3 Impact on Potential Attack Scenarios Page 31



Dashlane- Security White Paper v2.3.0

website with the URL of myothersubdomain.mydomain.com. This prevents the cre-

dential of a specific website from being provided to another website that share the

same top-level domain name.

Also, a credential saved by Dashlane when it has been used on a website with a

URL beginning with https will not be automatically filled on another website with a

URL beginning with http.

3.6 Memory Protection

A problem can arise if an attacker takes control of the user’s client device. In that

scenario, the attacker could retrieve the decrypted user data from the memory.

This is an extreme scenario as, in that case, the attacker can take control of

many parts, including adding a keylogger to captureUserMP or PINCode for pass-

wordless users.

• Mobile operating systems (Android, iOS) ensure that no process can ever ac-

cess the memory of another process and are not directly affected.

Finally, we believe the system integrity and security between processes is a sys-

tem function and Dashlane cannot (and should not) reinvent the wheel and add

useless complexity that could lead to other vulnerabilities and have negative side-

effects.

For more information on how Dashlane can help you improve password security,

please reach out to us and ask.

3 Impact on Potential Attack Scenarios Page 32

https://www.dashlane.com/business/enterprise?utm_source=website&utm_medium=whitepaper&utm_campaign=SecurityWP


Dashlane- Security White Paper v2.3.0

Appendices

A Activity Log - List of Events

A.1 Default Activity Logs

Event Name Event Message

master_password_reset_accepted Accepted an Account Recovery request from %(email)s

master_password_reset_refused Denied an Account Recovery request from %(email)s

user_device_added Added the device %(name)s

user_device_removed Removed the device %(name)s

requested_account_recovery Requested Account Recovery

completed_account_recovery Recovered their account through Account Recovery

dwm_email_added Added %(email)s to Dark Web Monitoring

dwm_email_removed Removed %(email)s from Dark Web Monitoring

user_group_created Created a group named %(groupName)s

user_group_renamed Renamed the %(oldGroupName)s group to %(newGroupName)s

user_group_deleted Deleted the %(groupName)s group

user_joined_user_group Joined the %(groupName)s group

user_invited_to_user_group Invited %(email)s to the %(groupName)s group

user_declined_invite_to_user_group Declined to join the %(groupName)s group

user_removed_from_user_group Removed %(email)s from the %(groupName)s group

team_name_changed Changed your company name to “%(name)s”

new_billing_period_created Extended your account until %(date)s

seats_added Added %(count)s seats to your account

domain_requested Added %(domain)s as an unverified domain

domain_validated Verified the domain %(domain)s

collect_sensitive_data_audit_logs_enabled (user) turned on unencrypted vault logs

collect_sensitive_data_audit_logs_disabled (user) turned off unencrypted vault logs

sso_idp_metadata_set Updated SSO identity provider metadata

sso_service_provider_url_set Configured SSO service provider URL

sso_enabled Enabled SSO

sso_disabled Disabled SSO

contact_email_changed Changed contact email to %(email)s

master_password_mobile_reset_enabled Turned on biometric recovery for %(deviceName)s

two_factor_authentication_login_method_added Activated a 2FA method

two_factor_authentication_login_method_removed Removed a 2FA method

user_invited Invited %(email)s to your account

user_removed Revoked %(email)s from your account

team_captain_added Changed %(email)s to admin rights

team_captain_removed Changed %(email)s to member rights

group_manager_added Changed %(email)s to group manager rights

group_manager_removed Changed %(email)s to member rights

user_reinvited Resent an invite to %(email)s

billing_admin_added Made %(name)s the billing contact

billing_admin_removed Revoked %(name)s as the billing contact

Table 4: Dashlane Activity Logs

A Activity Log - List of Events Page 33



Dashlane- Security White Paper v2.3.0

A.2 Additional Sensitive Activity Logs

Event Name Event Message

collect_sensitive_data_audit_logs_enabled (user) turned on additional activity logs (unencrypted)

collect_sensitive_data_audit_logs_disabled (user) turned off additional activity logs (unencrypted)

user_shared_credential_with_group
(user) shared %(rights [limited/full]) rights to the %(domain)s
login with %(group)s

user_shared_credential_with_email
(user) shared %(rights [limited/full]) rights to the %(domain)s
login with %(email)s

user_shared_credential_with_external
(user) shared %(rights [limited/full]) rights to the %(domain)s
login with the external user %(email)s

user_accepted_sharing_invite_credential
(user) accepted a sharing invitation for the %(domain)s
login

user_rejected_sharing_invite_credential
(user) rejected a sharing invitation for the %(domain)s
login

user_revoked_shared_credential_group
(user) revoked access to the %(domain)s login
from %(group)s

user_revoked_shared_credential_external
(user) revoked access to the %(domain)s login
from the external user %(email)s

user_revoked_shared_credential_email
(user) revoked access to the %(domain)s login
from %(email)s

user_created_credential (user) created a login for %(domain)s

user_modified_credential (user) modified the login for %(domain)s

user_deleted_credential (user) deleted the login for %(domain)s

user_created_collection (user) created a Collection %(name)s

user_imported_collection (user) imported [] logins into the Collection %(name)s

user_added_credential_to_collection (user) added the login for %(domain)s to the Collection %(name)s

user_removed_credential_from_collection (user) removed the login for %(domain)s from the Collection %(name)s

user_renamed_collection (user) modified the name for the Collection %(name)s

user_shared_collection_with_user (user) shared Collection %(name)s with %(roles)s role with %(email)s

user_shared_collection_with_usergroup (user) shared Collection %(name)s with %(roles) role with %(group)s

user_accepted_collection_invite (user) accepted the sharing invitation to the Collection %(name)s

user_rejected_collection_invite (user) rejected the sharing invitation to the Collection %(name)s

user_added_credential_to_shared_collection (user) added the %(domain)s login with %(rights) to to the Collection %(name)s

user_updated_collection_usergroup (user) updated %(group)s from %(roles) role to %(roles) role for the Collection %(name)s

user_updated_collection_user (user) updated %(email)s from %(roles) role to %(roles) role for the Collection %(name)s

user_revoked_collection_usergroup (user) revoked access to the Collection %(name)s for %(group)s

user_revoked_collection_user (user) revoked access to the Collection %(name)s for %(email)s

Table 5: Dashlane Sensitive Activity Logs

A Activity Log - List of Events Page 34



Dashlane- Security White Paper v2.3.0

B Change History

v2.2.0 (2024-01-08)

fix: resize and rename Table 1

fix: change page numbering in the table of contents

feat: adding new collection activity logs

feat: add change history section

v2.3.0 (2024-02-02)

fix: remove some format misconfigurations

feat: add info about entropy in tab.1

fix: remove specific antivirus mention in section 3.6

fix: simplify section 1.7

B Change History Page 35




	Contents
	Figures
	General Security Principles
	List of secrets
	Protection of User Data in Dashlane
	Local Access to User Data
	Local Data Usage After Decrypting
	Use of 2FA Applications to Increase User Data Safety
	Authentication
	Communication
	Details on Authentication Flow
	Adding a new device for Master Password based users
	Adding a new device for Passwordless users
	Proximity transfer with QR code scan
	Exchange via server with visual check


	Keeping the User Experience Simple
	Use of 2FA Application to Secure the Connection to a New Device
	2-Factor Authentication
	Sharing Data Between Users
	Account Recovery
	Admin-assisted Account Recovery
	Account Recovery Key

	Dark Web Monitoring for Master Password
	Activity Logs

	Single Sign-On (SSO)
	Introduction
	General Principle
	Single Sign-On with the Self-Hosted Connector
	Overview
	Services
	Keys, secrets, and certificates
	Workflow

	Single Sign-On with the Dashlane-Hosted Connector
	Overview
	Cryptographic materials
	Workflows
	Enclave initialization step
	Storage of the secure enclave
	Team creation
	User SSO login



	Impact on Potential Attack Scenarios
	Minimal Security Architecture
	Most Common Security Architecture
	Dashlane Security Architecture
	Anti-Clickjacking Provisions
	Same-Origin Policy
	Memory Protection

	Appendices
	Activity Log - List of Events
	Default Activity Logs
	Additional Sensitive Activity Logs

	Change History

